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The thermodynamic principles summarized in the preceding chapter lead to
a wide range of practical applications. Some of these, discussed in the next
sections, deal with the following kind of questions: To what extent is it possible
to convert the internal energy, contained in oil or other substances, so as to build
engines doing the work needed to move cars or heavy machinery? How is it
possible for highly structured living organisms to be created out of disorganized
assemblies of molecules? Why do solids melt or liquids vaporize? Why do
some molecules in a gas move with much higher speeds than others — and can
one quantitatively predict what fraction of the molecules move with any
specified speed?

A. Heat engines and biological systems

Creating order out of randomness

Entropy of an isolated system. Any isolated system tends to approach a
more probable situation which is more random and thus characterized by larger
entropy. Indeed, the entropy principle (the second law of thermodynamics)
asserts that the entropy S of any isolated system tends to increase, i.e., the
change AS of entropy of any such system is such that

for any isolated system, AS 2 0. (A-1)

How then is it possible to create systems which are more orderly, i.e.,less [~ N
random? For example, one may want to produce well-ordered large-scale
motions of vehicles or of pistons in machinery. How can such well-ordered

motion be produced from the random motions of the molecules contained in X X'
steam or gasoline? In other words, how is it possible to build all the many
machines prevalent in our modern industrial society? AS<0 AS'>0

Coupled systems. In order to make a system X more orderly, its entropy S AS* = AS + AS' 30
must decrease so that AS £ 0. According to (A-1), this is certainly not possible Y )
if the system is isolated On the other hand, suppose that.the sy.ste.m is n?t Fig. A-1. Increasing order of a system X
isolated, but interacts with another system X' (as schematically indicated in interacting with another system X'.
Fig. A-1). Then the entropy S* of the entire isolated system X*, consisting of X
and X', must increase so that

AS* = AS + AS'20. (A-2)



But this requirement can be satisfied even if the entropy S of the system X
decreases — provided that the entropy S' of the other system increases at least
by a compensating amount.

The preceding considerations lead to the following general conclusion:

A system can be made less random provided that it interacts (A-3)
with another system whose randomness increases at least by a
compensating amount.

Engines

An engine is a device which extracts energy from some system (e.g., from
gasoline or coal) and converts it into macroscopic work done on some other
system (e.g., into large-scale work to move pistons or other devices). The
engine itself should not be permanently changed in this process. Thus the
engine works in cycles, repeatedly returning to the same macroscopic state (so
that its entropy remains unchanged).

Unrealizable ideal engine. Fig. A-2 illustrates a simple engine that one
might ideally wish to construct. This engine absorbs an amount of heat q from
some heat reservoir (at an absolute temperature T) and uses it to do some
macroscopic work w done on some outside system. In this process, the internal
energy of the heat reservoir decreases as it gives off the heat q absorbed by the
engine. The energy law applied to the engine (whose own energy remains
unchanged) then implies that

-w+q=0 or w=gq, (A-4)

i.e., the entire heat absorbed by the engine has simply been converted into an
equivalent amount of work.

Such an ideally desirable engine can, however, not be constructed. Indeed,
it would merely transform some of the random internal energy of the heat
reservoir into orderly macroscopic work — and would thus reduce the entropy
of the universe. To be specific the entropy change AS* of the universe would be
negative and equal to

* =4 -
AS =T (A-5)

since the only entropy change is that of the heat reservoir which absorbs an
amount of heat —q.

Realizable engine. To construct a possible engine, one needs to follow the
guideline (A-3) and let the engine of Fig. A-2 interact with another system
whose entropy can increase by a compensating amount. Fig. A-3 illustrates such
an engine which absorbs an amount of heat q from a heat reservoir (at the
absolute temperature T) and gives off an amount of heat q' to another heat
reservoir (at the absolute temperature T"). The heat absorbed by this second
reservoir must then increase its entropy sufficiently so that the entropy the entire
universe increases.
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Fig. A-2. An unrealizable ideal engine.
The lower-case letters g and w are here
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Fig. A-3. A realizable engine
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The energy law applied to this engine implies that
O=-w+q-q
or w=q-q. (A-6)

Thus the work obtained from this engine is smaller than that obtained from the
unrealizable engine of Fig. A-2.

If the engine in Fig. A-3 is to do positive work, the heat q' given off to the
second reservoir must be smaller than the heat q absorbed from the first
reservoir. Yet, this smaller heat q' must increase the entropy of the second
reservoir by a larger amount than the entropy decrease of the first reservoir.
This is only possible if the absolute temperature T' of the second reservoir is
sufficiently smaller than the absolute temperature of the first reservoir. The
entropy change of the universe, as a result of the entropy changes of the two
reservoirs, is then equal to

AV=%+%ZQ (A-T)

As indicated above, this total entropy change must be positive.

Efficiency of a engine. The heat q' given off to the second reservoir is, by
(A-6), equal to

™ ~
w_ 11
Hence T.—Sq T T
w T T-T
A e -
or q_l T T (A-8)

This ratio w/q compares the work done by the engine to the heat put into it.
The ratio is called the engine’s efficiency and is denoted by the letter | (the
Greek letter eta). Because some heat q' is given off to the second reservoir, this
efficiency is less than 1 (the efficiency of the unrealizable engine of Fig, A-2).
The relation (A-8) thus implies that

L—_g.' SH . (A-9)

engine efficiency: n= q T

The maximum possible efficiency of an engine, operating between two heat
reservoirs at the absolute temperatures T and T', is thus equal to (T' - T)/T. The
maximum possible efficiency is, therefore, larger if the temperature difference
between the heat reservoirs is larger.



The maximum possible efficiency, corresponding to the equals sign in
(A-9), could only be achieved if the entropy of the combined systems remains
unchanged. For example, it might be achieved if the engine operated quasi-
statically so that the systems would essentially always remain in equilibrium.

Example: Steam engine

Suppose that a steam engine operates between the temperature of
boiling water at atmospheric pressure (100°C or 373 K) and a
condenser at room temperature (20°C or 293 K). According to (A-9),
the maximum possible efficiency of such a steam engine would thus be

_T-T 373-293_ 80 _
Mmax =" =""3737 =373~

0.21.

Real steam engines have efficiencies smaller than this because of
frictional effects and other factors preventing the conversion of heat
into useful available work. However, the attainable efficiency can be
increased by increasing the temperature difference, e.g., by using
superheated steam at temperatures above 100°C.

Biological systems

Biological systems grow by becoming more orderly and thus decreasing
their entropy. According to (A-3), this is only possible because they increase the
entropy of their environment by more than a compensating amount.

An isolated biological organism could not survive. For example, a baby put
into a completely isolated box would soon die and decompose into simpler
chemical compounds. In this process, a well-organized biological organism
would become transformed into more disordered substances. The entropy of the
isolated system (consisting of the box and its contents) would then
correspondingly increase.

Of course, one would never want to treat a baby like this. On the other
hand, suppose that one puts the baby in a box which also contains milk, carrots,
and other foods. The baby itself is then not an isolated system. Thus the baby
could grow, forming highly organized biological organs of increasing size and
thus decreasing its entropy. On the other hand, the carrots and other foods in its
environment would be transformed into feces and other much less well-
organized chemicals, i.e., their entropy would increase by more than a
compensating amount. Thus the baby could grow while the entropy of the entire
isolated system (consisting of the box and its contents) again increases.

Similar considerations apply on a molecular biochemical scale. For
example, the formation of proteins involves the ordered assembly of simple
molecules into well-ordered polymer chains. This is clearly a process which
involves increasing order, i.e., decreasing randomness or decreasing entropy.
Such processes must, therefore, always involve coupled chemical reactions in
which other chemical compounds are transformed into less ordered form — so
that their entropy increases by more than a compensating amount.

9. Important applications
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Problems

[A-1] Work obtainable from a steam turbine

A steam turbine is operated with an intake temperature of 400°C and an
exhaust temperature of 150°C. Suppose that an amount of heat Q is supplied to
the turbine at its intake.

(a) What is the minimum amount of heat which leaves the turbine exhaust?

(b) What is the maximum work which the turbine can do? <h-9> <a-7>

[A-2] Refrigerators
A refrigerator is a device which extracts heat from some system X and then

gives off this system to an environment X' at a higher absolute temperature. In

particular, consider the situation where the system X is a heat reservoir at a

constant absolute temperature T and the environment X' is a heat reservoir at a

higher absolute temperature T'. (The refrigerator itself merely goes through

some cyclic process so that there is no net change in its entropy or other
properties.)

(a) Fig. A-4 illustrates such a refrigerator designed to extract an amount of heat
q from the system X and to give off this heat to the environment X'. What
then would be the entropy change of the total system consisting of X and
X'? Is this entropy change positive or negative? Could such a refrigerator
be constructed?

(b) Fig. A-5 illustrates a more realistic refrigerator where some positive work w
is done on the refrigerator to extract some heat q from the system at the
lower temperature. Some amount of heat q' is then given off to the reservoir
at the higher temperature. How is the heat q' related to the heat q and the
work w?

(c) Use entropy considerations to show that the heats q and q' must be related to
that g/q' < T/T".

(d) The coefficient of performance of a refrigerator is the ratio g/w of the heat q,
extracted from the system at the lower temperature, compared to the work w
which needs to be done to extract it. What then is the maximum possible
value of the coefficient of performance of the refrigerator in Fig. A-57
Express your answer in terms of the absolute temperatures T and T' of the
reservoirs. <a-6>

Note that the refrigerator in Fig. A-5 is similar to the engine in Fig. A-3 but is

running backwards (i.e., work is done to extract heat instead of heat being

absorbed to do work).

[A-3] Heat pump used for heating a house

To heat a house in the winter, some electric work w can be done on an
electric heater so as to supply to the house an amount of heat q = w.
Alternatively one may do this electric work to run a special refrigerator (called a
“heat pump”) which supplies the heat q to the house by extracting some heat g
from the colder outside surroundings of the house.

Assume that the inside of the house is to be kept at the constant absolute

temperature T while the outside surroundings of the house are at a lower
constant absolute temperature T,

(a) It is useful to compare the heat q supplied to the house by the heat pump
with the work w that needs to be done on this pump. Use entropy
considerations to determine the maximum value of the ratio q/w. Express
your answer in terms of the absolute temperatures T and Ty

(b) What is the maximum value of the ratio g/w if the inside of the house to be
maintained at a temperature of 25°C and the outside surroundings of the
house are at a temperature of 0°C? Which requires a lower cost of needed
electricity, the heat pump or an electric heater? <a-12>

( Heat reservoir T > T\
Refrigerator
L Heat reservoir
J
Fig. A-4. A hypothetical refrigerator.
~
4 Heat reservoir T>T
w Refrigerator
i i
Heat reservoir
g /

Fig. A-5. A realizable refrigerator.



B. Phase transformations

A system may often exist in several different forms. Thus, a substance may
exist in the form of different phases corresponding to different arrangements of
its molecules. (For example, the substance may exist in the form of a solid, a
liquid, or a gas). A system may also consist of the same atoms combined into
different kinds of molecules. (For example, the system might be a gas mixture
consisting of CO, CO,, and O, molecules in chemical equilibrium.) In all such
cases, one may want to know in what form the system exists at different
temperatures or pressures.

System interacting with a large environment

To examine this question, consider such a system X in contact with its
environment X' (e.g., the system in contact with the surrounding atmosphere). If
this environment X' is much larger than the system X, its temperature does not
change significantly irrespective of any amount energy transferred to the much
smaller system, nor does its pressure p' change significantly irrespective of any
volume change of the much smaller system. The absolute temperature T' and
pressure p' of the environment can thus be clearly specified. Correspondingly,
one can examine the properties of the system X when it is in equilibrium with its
environment at any such temperature T" and pressure p'.

If the system X can exist in two different forms A and B, in which form is it
more likely to be? To answer this question, consider the entropy S* of the total
isolated system X* consisting of X and its environment X'. Then we know that
this isolated system is more likely to be in equilibrium in the situation
corresponding to a larger value of its entropy S*.

Suppose that the entropy of the total system is S,* when the system X is in
form A, and the that entropy of the total system is Sg* when the system is in
form B. These entropies can be compared by considering the change

AS*=SB—SA (B-l)

of the total entropy when X changes from the form A to the form B. Then we
can conclude the following:

o If Sp* > Su (so that AS* > 0), then the system X is much
more likely to be in form B.

» If Sg* < Su (so that AS* < 0), then the system X is much (B-2)
more likely to be in form A.

» If Sg* = S4 (so that AS* = 0), then the system X can exist in
equilibrium in any mixture of forms A and B.

The total isolated system X* is schematically illustrated in Fig. B-1. Its
entropy change (B-1) is equal to

AS* = AS + AS' (B-3)

9. Important applications

Total isolated system X*

P '
Y AS* = AS + AS )

Fig. B-1. A system X interacting with a
large environment X'.
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where AS = Sp — S, is the entropy change of the system X and AS' = S'g — S'4 is
the corresponding entropy change of its environment. But since the temperature
T' and pressure p’ of the environment remain constant, the entropy change of the
environment is simply related to the heat Q' absorbed by it. Thus

as = L AEEDAV (B-4)

Here we have used the thermodynamic energy law to write
Q'=AE'-W'= AE' + p' AV' (B-5)

where AE' is the energy change of the environment and where W' = —p' AV' is
the work done on it when its volume change by an amount AV".

But since the energy and volume of the total isolated system remain
constant,

AE'=—AE and AV'=-AV.

Hence the heat absorbed by the environment is simply related to the quantities
describing the system X itself, i.e.,

Q=-AE-p' AV=-Q (B-6)

where Q is the heat absorbed by the system X when it changes from form A to
form B. Thus the entropy change (B-3) of the total system is equal to

AS* = AS -%= AS — (&TRA—V) . B-7)

Phases existing in equilibrium

Consider then the specific case where a substance can exist in two different
phases A and B. For example, phase A might be the solid form of the substance
and phase B might be the liquid form. Or phase A might be the liquid form and
phase B might be the gaseous form. Or phase A might be the solid form and
phase B might be the gaseous form.

Entropies and internal energies of different phases. In all these cases,
the entropy of phase B is larger than that of phase A. For example, the entropy
of the liquid is larger than that of the solid since the molecules in the liquid can
move randomly about instead of being confined to remain near their fixed
positions in the solid. Similarly, the entropy of the gas is larger than that of the
liquid since the molecules can then move randomly throughout the entire
volume of the confining container instead of being constrained to remain near
each other by the attractive forces due to neighboring molecules.

In all these cases, the internal energy of phase B is also larger than that of
phase A. For example, the internal energy of the liquid is larger than that of the
solid since the molecules in the liquid can move about much more freely and
thus have much larger kinetic energy. Similarly the internal energy of the gas is



larger than that of the liquid since the molecules are then much farther apart so
that their potential energy of interaction is small (i.e., larger than the negative
potential energy due to the attractive intermolecular forces in the liquid).

The entropies and internal energies of the phases A and B are thus related so
that

SB > SA and EB > EA- (B—g)

Phases existing at different temperatures

At a particular temperature T' of the environment, is it more likely that the
substance will exist in the form of phase A or in the form of phase B?

According to (B-2), we can answer this question by considering the entropy
change AS* of the total isolated system when the substance changes from phase
A to phase B. When this happens, the entropy S of the substance increases. But
since the substance absorbs some positive heat Q from the environment, the
entropy S' of the environment decreases. The resultant effect on the total
entropy change AS*, specified in (B-7), depends then on the relative magnitudes
of these entropy changes.

If the absolute temperature T' is sufficiently high, the entropy change AS' =
—Q/T" of the environment has a smaller magnitude than the entropy change AS of
the substance. The entropy change AS* of the total system is, therefore,
positive. Hence the total system can attain a larger entropy if the substance
changes to the higher-entropy form B. At sufficiently high temperatures the
substance will, therefore, exist in its high-entropy form. (This is why, at
sufficiently high temperatures, solids change into liquids and liquids change into
gases.)

But if the absolute temperature T' is sufficiently low, the entropy change AS'
= —-Q/T' of the environment has a larger magnitude than the entropy change AS
of the substance. The entropy change AS* of the total system is, therefore,
negative. Hence the total system can attain a larger entropy if the substance
changes to the lower-entropy form A because the entropy of the environment
increases by more than a compensating amount. At sufficiently low
temperatures the substance will, therefore, exist in its low-entropy form. (This is
why, at sufficiently low temperatures, gases change into liquids and liquids
change into solids.)

Lastly, there exists the special situation where the entropy change of the
total system is zero (because the entropy increase of the substance is exactly
compensated by a corresponding entropy decrease of its environment).
According to (B-7), this special situation corresponds to one where the absolute
temperature T' is such that

AS*:AS-%=AS-(A—E—T-%,’—A—V—) =0

so that

9. Important applications
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AE + p' AV
T:%:—*Zg—. (B-9)

At this special temperature, any amounts of the two phases of the substance can,
therefore, coexist in equilibrium. (For example, at the temperature of 0°C any
amounts of ice and water can coexist in equilibrium.)

Fig. B-2 summarizes the preceding conclusions by indicating in which /7

temperature regions the substance will exist in phase A or in phase B. s"l; < s’: Sk =Sh §'§ > S";
Phases existing at different pressures Phase A Phase B

The preceding paragraphs examined the effects of the temperature when the
substance is maintained at a fixed pressure p' of its environment. But this
pressure too has an effect. Indeed, the heat Q absorbed by the system in a phase T—>
change depends on the pressure since the environment can do work on the \
substance if its volume changes. Hence the entropy change AS' = —Q/T of the ~ Fig. B-2. Phases existing at different
environment is correspondingly affected. temperatures.

The result (B-9) indicates explicitly how the pressure affects the
temperature at which the phases A and B can coexist in equilibrium.

If the volume of the substance does not change in changing from phase A to
phase B, then AV = 0 so that p'AV = 0. Hence (B-9) indicates that the
coexistence temperature T' is then unaffected by pressure.

If the volume of the substance increases in changing from phase A to phase
B, then AV > 0 so that p'AV > 0. Hence (B-9) indicates that the coexistence
temperature T' is larger if the pressure p' is larger. [For example, most
substances increase their volume when they melt so as to change from their solid
to liquid forms. Thus (B-9) predicts that an increase in atmospheric pressure
should raise the temperature at which such a substance melts.]

If the volume of the substance decreases in changing from phase A to phase
B, then AV < 0 so that p'AV < 0. Hence (B-9) indicates that the coexistence
temperature T' is smaller if the pressure p' is larger. [For example, a substance
like water is exceptional in that its volume decreases when its melts when
changing from ice into liquid water. Thus (B-9) predicts that an increase in
atmospheric pressure should lower the temperature at which ice melts.] 4 N

Phase diagrams o
liquid
. “C"‘d critical

All the preceding conclusions can be summarized in a phase diagram for solid o ;
P pon
)

any particular substance. Such a typical phase diagram, illustrated in Fig. B-3,
indicates in what phase the substance is found in equilibrium at any particular . a\.\o‘\c\““ triple gas
temperature T' and pressure p'. The curves indicate the temperatures and N pownt

corresponding pressures at which two phases can coexist in equilibrium. (In T
particular, the melting curve indicates when the solid and liquid can coexist , the /
sublimation curve indicates where the solid and gas can coexist, and the  Fig. B-3. Phase diagram for a typical
vaporization curve indicates where the liquid and gas can coexist.) The regions substance.

nlehl'ng curve
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between these curves indicates ranges of temperature and pressure at which only
one particular phase of the substance can exist in equilibrium.

All three coexistence curves meet at a single point called the triple point.
This point indicates the unique temperature and pressure at which all three
phases of the substance can coexist in equilibrium. (The temperature at which
this is possible for a particular substance is thus very well specified. This is why
the triple point of water has been chosen as a standard for defining the Kelvin
temperature scale.)

As the pressure is increased, a gas becomes increasingly dense and becomes
ultimately indistinguishable from a liquid. This is why the vaporization curve
ultimately ends at a point called the critical point. At pressures below that
corresponding to this point there is a well-observable phase transformation
between the liquid and the gas. But at pressures higher than that, there is no
distinct phase transformation, but merely a continuous transformation of liquid
into dense gas.

The phase diagrams of some substances can be considerably more
complicated. For example, there exist many different solid phases of water (i.e.,
of ice), corresponding to different crystal structures — with corresponding
possible phase transformations between all of these.

Problems

[B-1] Phase changes with increasing temperature

Consider a substance whose phase diagram is shown in Fig. B-4. Suppose
that one starts with this substance in its solid form at some low temperature and
gradually increases its temperature. If one does this at each of the following
pressures, what phase transformations occur and what phases of the substance
will be successively observed?

(a) At a fairly low pressure like p;.
(b) At amoderate pressure like p,.
(c) Atahigh pressure like p;. <a-16>

[B-2] Phase changes with increasing pressure

Consider a substance whose phase diagram is shown in Fig. B-5. Suppose
that one starts with this substance in its gaseous form at some very low pressure
and gradually increases its pressure. If one does this at each of the following
temperatures, what phase transformations occur and what phases of the
substance will be successively observed?

(a) At a fairly low temperature like T).
(b) Atamoderate temperature like T,.
(c) At ahigh temperature like T;. <a-3>

[B-3] Phase diagrams for different kinds of substances
Fig. B-3 illustrates the phase diagram of a particular substance.

(a) When this substance melts, so as to change from its solid to its liquid form,
does its volume increase, decrease, or remain the same?

(b) The fact that ice floats on the surface of a lake indicates that the volume of
ice is larger than the volume of the same amount of liquid water. In what
way would the phase diagram for water differ from that shown in Fig. B-3?
Sketch this phase diagram. <h-9> <a-13>

9. Important applications
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C. Probabilities at a constant temperature

Isolated system. If a system X is isolated, its total energy has some constant
value. According to the basic statistical postulate (3B-2), such a system in
equilibrium is then equally likely to be in any one of its basic states consistent
with this total energy.

System interacting with a large environment. However, it is much more
common that a system X is not isolated, but interacts with a much larger
environment X' whose temperature T' remains essentially constant (because it
is nearly unaffected by any heat absorbed from the much smaller system.). For
example, a glass of water sitting in a room interacts with the air and walls of the
room whose temperature remains essentially constant. Similarly, any one
molecule in a gas interacts with all the molecules in the rest of the gas whose
temperature remains essentially constant.

Under these conditions, it is only the total energy E* of the entire system
X* (consisting of X and X') which remains constant. Hence the system X can
have different possible energies. Furthermore, it is only the entire isolated
system X* which is equally likely to be found in any one of its basic states.

Probability of being in any basic state

Consider such a system X in equilibrium while interacting with its
environment X' at an absolute temperature T'. What then is the probability P,
that this system is found in any one of its basic states r where its energy is E;?

This probability is proportional to the number Q* of basic states available to
the entire isolated system X* under these conditions. But, when the system X is
in the one particular state r, the number Q* of basic states available to the entire
system is just the number of basic states Q' available to its environment X',
Thus

Ppoc Q' o 57K C-1)

where S' =k InQ' is the entropy of the environment.

Qualitative considerations. Suppose that the system X is in a particular
state r where its energy E,is small. (See Fig. C-1.) Since

X | Environment X'

E; + E'= E* = constant

{
or E' =E*-E, (C2)
;

Xinstater; Number Q' of states
the energy E' of the environment X' must then be correspondingly large. ' available to environment X
Accordingly, the number of basic states available to the environment is also
large. Hence (C-1) implies that the probability of this situation (where X is

found in a state of small energy) is relatively large. IfErsmall,} E' large, hence Q' large

Energy E; Energy E'=E* - E;

Suppose, however ,that the system X is in a particular state r where its IfEclarge, ; E'small, hence €' small )

energy Ep is larger than before. Then the energy of the environment X' must be

. . . . Fig. C-1. A system X in equilibrium with a
correspondingly smaller. Accordingly, the number of basic states available to  much larger environment X'.
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the environment is also smaller. Hence (C-1) implies that the probability of this
situation (where X is found in a state of larger energy) is correspondingly
smaller.

In short, it is more probable that the system X is found in a state of low
energy than in a state of high energy (because the number of basic states
available to its environment is then larger).

Quantitative description. The preceding qualitative considerations can
easily be made quantitative. The entropy S' of the environment X' depends on
its energy E'. As is apparent from (C-1), this energy differs from the energy E*
of the entire system only by the much smaller energy E; of the system X.
Correspondingly, the entropy S' of the environment differs only slightly from the
entropy S'g which it would have if it had the energy E* of the entire isolated
system. This difference can, therefore, be written as

5-8,=5 By (C-3)

where the rate of change dS'/dE' indicates how rapidly the environment’s
entropy S' varies with its energy E'. But this rate of change is simply related to
the absolute temperature T' of the environment. Indeed, by the definition (§) of
absolute temperature, (C-3) is simply

s'-5= (g5 ) 8

g _Er
so that S'=8%- T (C-4)
The probability (C-1) is thus simply equal to
P, oc ¢So=EAKT) _ oS'o ;~(E/KT)
or P, o & EKT), (C-5)

1
since ¢S is merely a constant factor.

The resuit (C-5), which is very widely useful, agrees with our previous
qualitative conclusions. Indeed, it shows explicitly that a state r with a larger
energy E; is less probable than one with a smaller energy. It also indicates that
the difference between these probabilities is more pronounced if the absolute
temperature T' is lower.

Molecular velocities in a gas

Probable velocity of a molecule. The preceding result can be immediately
applied to predict the probable velocities of a molecule in a gas at an absolute
temperature T. Any molecule in such a gas interacts with an environment
consisting of all the other molecules at an absolute temperature T. This
molecule can be in any basic state specified by the molecule’s position and

9. Important applications

The result (C-5) Is called the “canonical
distribution”. The exponential factor in (C-5)
is also known as the “Boltzmann factor”.
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velocity. The energy of the molecule in any such state r, where its velocity is
v, is merely its kinetic energy
E = %—mv2 (C-6)

if we neglect the molecule’s gravitational potential energy which is much
smaller than its kinetic energy. According to (C-5), the probability P; that the

molecule is in this particular state is then

Py o< e~mv2/2kT (C-7)

Probable speeds of a molecule. The result (C-7) specifies the probability
that a molecules is in a particular basic state where corresponding to one of its
possible velocities V. What then is the probability Py that the molecule has a
some speed in the range between v and some slightly larger speed v + dv?

The molecule can have many possible velocities, with different directions,
corresponding to speeds in this range. The points in Fig. C-2 indicate the
possible discretely described values of the molecule’s velocities (corresponding
to the possible discrete values of its velocity components vy, vy, and vz). The
possible values of the molecule’s velocities, corresponding to speeds in the
range between v and v + dv, are then indicated in Fig. C-2 by all those points
which lie in the shaded spherical shell of radius v and thickness dv. The number
of such points is proportional to the volume of this spherical shell (a volume
equal to the area 4mv2 of the shell multiplied by its thickness dv). The
probability Py that a molecule has a speed in the range between v and v + dv is
then obtained by multiplying the probability (C-7) that the molecule has any
particular velocity in this range by the total number of possible velocities in this
range. Thus

| Py o (4nv2 dv) eMVY/KT | (C-8)

(This resuit is known as the “Maxwell speed distribution™.)

Py 4o
T=100K
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Fig. C-3. Probability P, that a molecule in nitrogen gas has a speed in the range between

vand v +dv.
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(vz axis point out of paper)

Fig. C-2. Range of molecular speeds
between v and v + dv. (The points indicate
possible discrete velocities of a molecule.)

The Scottish physicist James Clerk Maxwell
#1 831-1879), who Is best know for his
undamental contributions to
electromagnetic theory, derived this result in
the year 1860.
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9. Important applications

Fig. C-3 illustrates graphically the probabilities of various e
molecular speeds at some absolute temperature of the gas.
Note that there is a speed which is most probable; speeds
much larger than that are much less probable. If the absolute
temperature is larger, the most probable speed is
correspondingly larger and the range of appreciably probable

vacuum

speeds is also larger.

shutter 1 shutter 2

\

detector

J

Experimental verification. Experimental information

about the speeds of the molecules in a gas can be obtained by ~ Fig. C-4. Measurement of the speeds of molecules escaping

making a very small hole in the vessel containing the gas.
Some of the molecules then escape through this hole into a
surrounding vacuum. The speeds of these escaping molecules can then be
readily measured and are closely related to the speeds of the molecules inside
the gas,

For example, such a measurement can be made with an arrangement like
that indicated in Fig. C-4. Here the first shutter is momentarily opened, letting a
bunch of molecules pass through. Some time t later, the second shutter is
momentarily opened. If the distance between the shutters is L, only those
molecules traveling with a speed v = L/t pass through both shutters. In this way
one can measure how many molecules have any particular speed.

Such experimental measurements have well confirmed the theoretically
predicted probabilities of molecular speeds.

Problems

[C-1] Height dependence of molecules in a gas

A gas of molecules, each having a mass m, is located near the surface of the
earth where the gravitational acceleration has a magnitude g. The following
questions examine the effect of the gravitational interactions on the gas when it
is in equilibrium at an absolute temperature T.

(a) What is the gravitational potential energy of a gas molecule located at a
height h above the surface of the earth?

(b) Such a molecule (having any particular velocity) has a probability P of
being located within a small range of heights near the height h. How does
this probability depend on the height h?

(c) What is the ratio P'/P of the probabilities that such a molecules is found near
the height h' rather than near the height h?

(d) Suppose that the gas is nitrogen gas, at a temperature of 25°C, contained in
a 4-meter high room. What then is the ratio P'/P of the probability P' that a
nitrogen molecule (whose molecular weight is 28) is found near the ceiling
of the room compared to the probability P that it is found near the floor? Is
this ratio significantly different from 1, or are the molecules nearly
uniformly distributed throughout the entire room?

. (e) How large would the difference (b' h) of heights have to be so that the ratio

P/P=0.90? <a-18>

through a small hole of a gas-filled container.

A convenient shutter can be made by
rotating a solid wheel with a slot in it.
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D. Summary

Important knowledge

System interacting with its environment:

Relation between entropies: AS + AS'20
(A system’s entropy can be decreased if the entropy of its environment
is increased by at least a compensating amount)

Application to heat engines: Efficiency 1 < (T ~ T')/T).

Phase transformations:
Total entropy change in a transformation: AS* = AS — Q/T"'

(where AS is entropy change and Q heat absorbed in transformation).
Phases are in equilibrium if 'S* = 0, i.e., at temperature T' = Q/AS.

Application to phase diagrams. (See Fig. B-3.)

Probabilities at a constant temperature: '
Probability of being in any one basic state r: Py o< ¢ ~E/KT),

Application to molecular speeds in a gas. (See Fig. C-3.)

New abilities
You should now be able to do the following:

(1) Use entropy arguments in order to discuss the possible functioning of heat
engines or refrigerators.

(2) Use phase diagrams to determine which phases of a substance will exist at
particular temperatures or pressures.

(3) Compare the probabilities that a system, maintained at a constant
temperature, is in any two of its basis states.

Problems

[D-1] Temperature inside a refrigerator

A refrigerator is designed to maintain a constant temperature of its contents
while removing from them an amount of heat q. The heat extracted from the
refrigerator is given off to the surrounding room maintained at a higher constant
absolute temperature To. An amount of work w is done on the compressor used
to operate this refrigerator.

(a) Use entropy considerations to determine the minimum absolute temperature
which can be maintained inside the refrigerator under these conditions.
Express your answer in terms of T, q, and w.

(b) Suppose that the heat to be removed from the refrigerator is that due to a
100-watt light bulb used to illuminate its inside, and that the power
available to run the compressor is also 100 watt. What then is he minimum
temperature which can be maintained inside the refrigerator if the
temperature of the room is 300 K? <g-2>

[D-2] Work needed to freeze water

An electric freezer is designed to take water at 25°C and cool it down so as
to produce ice at 0°C. The heat extracted in this process is rejected to the room
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whose temperature remains nearly constant at 25°C. The heat capacity of one

gram of water is 4.19 J/K and the heat liberated when one gram of water freezes

at0°Cis 333 J.

(a) How much heat must be extracted from one gram of water at 25°C to
transform it into ice at 0°C?

(b) What is the entropy change of the water in this process?

(c) What is the entropy change of the room in this process if some amount w of
electrical work is done to operate the freezer?

(d) What is the minimum amount of such electrical work which must be done?
<a-14>

[D-3] Work obtainable by extracting heat from two identical systems

Each of two identical systems has a temperature-independent heat capacity
C. Suppose that a heat engine is operated by extracting heat from one of these
systems, initially at an absolute temperature T}, and rejecting heat to the other
system, initially at a lower absolute temperature T,. After the engine has done a
total amount of work w on its environment, the two systems then reach a
common final absolute temperature T .

(a) What is the total amount work w done by the engine? Express your answer
in terms of the heat capacity C and the temperatures T, T,, and T, <h-7>

(b) Use entropy considerations to derive an inequality relating the final
temperature T to the initial temperatures T'; and T.

(¢) What is the maximum total work which can be done by this engine if the
systems are initially at the absolute temperatures'T| and T,? <a-10>

[D-4]1 Cooling one object at the expense of another
Two identical objects, each of which has a temperature-independent heat
capacity C, are initially at the same absolute temperature T. It is desired to cool
one of these objects to a lower absolute temperature T; by using a refrigerator
which extracts heat from this object and gives all heat off to the other object.
(a) What then is the minimum absolute temperature attained by the other
object? <h-10>
(b) What is the minimum work which must be done on the refrigerator to
accomplish this task? <a-I>

[D-5] Time needed to freeze water

What is the shortest possible time needed to freeze 2.0 kg water at 0°C if a
S50-watt motor is available to run the freezer which rejects heat to its
surroundings at the constant temperature of 27°C? (The heat needed to melt
1.0 kg of ice is 3.33 X 109 1.) <h-12> <a-5>

[D-6] Free energy of a system in contact with a large environment

Suppose that a system X is in contact with an environment X' which is so
large that its absolute temperature T' and pressure p' remain essentially constant
(irrespective of any energy or volume change of the system ). The total entropy
of S + §' of the total isolated system consisting of X and X' then tends to
increase and to approach a maximum value.

Show that the quantity

G=E-TS+pV

(where E is the energy of the system, S is its entropy, and V is its volume) then
tends to decrease and to approach a minimum value. (The quantity G is called
the “Gibbs free energy” of the system.) <h-4>

9. Important applications
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[D-7] Engine process described by temperature and entropy

A heat engine operates quasi-statically by going through the successive
states ABCDA of the cyclic process indicated in Fig. D-1. The graph in this
figure shows how the entropy S of the engine varies with its absolute
temperature T. Answer the following questions without making any special
assumptions about the nature of the engine.

(a) What is the numerical value of the heat absorbed by the engine in the
process AB during which the engine does some work while its temperature
is kept at the constant value T, = 400K?

(b) What is the numerical value of the heat absorbed by the engine in the
process CD during which the engine does some work while its temperature
is kept at the constant value T; = 300K?

(c) What is the numerical value of the work done by the engine in one cycle?

(d) What is the efficiency of the engine? <h-1> <a-8>

[D-8]1 Carnot engine

In 1824 Carnot analyzed a particular idealized engine which can convert
some of the internal energy of two heat reservoirs into usable macroscopic work.
This engine operates with v moles of any ideal gas and goes quasi-statically
through the cyclic process ABCDA illustrated in Fig. D-2. The gas has, at
constant volume, a temperature-independent specific heat c.

(a) Inthe process AB, the gas is maintained at the constant temperature T of the
warmer reservoir while its volume is changed from V, to Vg. In this
process, what is the heat Q,p absorbed by the gas from this reservoir? Is
this heat positive or negative? Express your answer in terms of v, R, T, and
the volumes V, and Vi, <h-3>

(b) In the process CD, the gas is maintained at the constant temperature T of
the colder reservoir while its volume is changed from V¢ to Vp. In this
process, what is the heat Qcp by the gas to this reservoir? Is this heat
positive or negative? Express your answer in terms of v, R, T', and the
volumes V¢ and Vp.

(c) In the adiabatic process BC the volume of the gas changes while its
temperature changes from T to T'. What then is the ratio Vo/Vy of the
volumes of the gas? Express your answer in terms of T and T

(d) In the adiabatic process DA the volume of the gas changes while its
temperature changes from T' to T. What then is the ratio V,/Vp of the
volumes of the gas? Express your answer in terms of T and T

(e) By combining the results found in parts @ and b with the results found in
parts ¢ and d, find the ratio Q,p/Qcp of the heats absorbed by the gas from
the two reservoirs. Express your answer solely in terms of the temperatures
T and T of these reservoirs.

(f) What is the total work w done by the gas on its surroundings during the
complete cycle ABCDA? Express your answer in terms of the heats
absorbed from the two reservoirs. <h-6>

(g) Use the preceding results to calculate the efficiency w/Qap of the engine.
Express your answer solely in terms of the temperatures T and T' of the two
heat reservoirs. Does the efficiency calculated for this particular engine
agree with the general result (A-9) which specifies the efficiency of any
engine operating quasi-statically between two heat reservoirs? <a-4>
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Fig. D-1. Engine process described by
temperature and entropy.
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Fig. D-2. Cyclic process of a Carnot engine.
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[D-9]% Gasoline engine

A gasoline engine operates by letting a gas, consisting of air with a small
amount of gasoline, enter a cylinder closed by a movable piston. The gas then
goes through a cyclic process approximately described by the graph in Fig. D-3
which shows how the pressure p of the gas varies with its volume V. Here AB
represents the adiabatic compression of the air-gasoline mixture; BC represents
the rise in pressure due to the explosion of the gas mixture at constant volume
(since the explosion occurs so rapidly that the piston has no time to move); CD
represents the adiabatic expansion of the gas mixture while it does useful work
by moving the piston; and DA represents the final cooling of the gas at constant
volume during the exhaust phase of the cycle.

An approximate analysis of this engine can be achieved by assuming that
the previous cycle is carried out quasi-statically with a fixed amount of ideal gas
having a temperature-independent molar specific heat ¢ at constant volume.

(a) What is the heat Qpc absorbed by the gas during the step BC of the cycle?
Is this heat positive or negative? Express your answer in terms of ¢, R, Vi
and the pressures pg and pc.

(b) What is the heat Qp, absorbed by the gas during the step DA of the cycle?
Is this heat positive or negative? Express your answer in terms of ¢, R, Vo
and the pressures pp and py.

(c) How is the work w, done by the gas on the piston during the entire cycle,
related to the preceding heats? What then is the efficiency w/Qpc of the
engine? Express your answer in terms of Vy, V,, and all the preceding
pressures.

(d) By relating the initial and final pressures in each of the adiabatic processes
AB and CD, express the efficiency solely in terms of ¢, R, and the volumes
Vl and Vz.

(e) Assume that he gas used in the engine is air which is a diatomic gas
(consisting of nitrogen and oxygen) whose heat capacity ¢ = (5/2)R. What
then would be the numerical value of the efficiency of this engine if the
compression ratio V{/V, = 0.5? What would be the value of this efficiency
if this ratio is 0.1? <a-9>

[D-101+ Most probable speed of molecules in a gas

Use the Maxwell speed distribution (C-8) to find the most probable speed of
amolecule in a gas (i.e., the speed corresponding to the maximum of one of the
graphs in Fig. C-3.),

(a) Express your answer in terms of the mass m of a molecule, the absolute
temperature T of the gas, and Boltzmann’s constant k. <h-2>
(b) What is the numerical value of the most probable speed of a molecule of

nitrogen gas at a room temperature of 25°C? (The molecular weight of a
nitrogen molecule is 28.) <a-1I>

9. Important applications
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Fig. D-3. Cyclic process of a gasoline
engine.




