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The last several chapters have discussed systems that interact by absorbing
or giving off heat, but without doing any large-scale work. The present chapter
extends this discussion to considering the general case where interactions may
involve both heat and work. It thereby leads to theoretical knowledge that can
deal with all interactions between large-scale systems and that permits a wide
range of practical applications.

A. Entropy change in a quasi-static process

Entropy change when no heat is absorbed

The preceding chapters considered systems on which no large-scale work is
done, but which may absorb heat and thereby incur changes in their entropy. Let
us now consider the opposite extreme case of systems which absorb rno heat, but

on which work may be done. What is the entropy change of such a system?

Entropy change of a moving object. Suppose that some solid object is
slowly moved from one place to another. Large-scale work may then be done
on this object (e.g., if the object moves downward by some distance, work is
done on it by the gravitational force due to the earth). But the random internal
motions of the atomic particles in the object are thereby unaffected, i.e., the
entropy of the object remains thereby unchanged.

Entropy change of any system in a quasi-static process. Consider now a
more complex system on which work can be done because its volume can
change. For example, Fig. A-1 indicates such a system X (a gas or liquid) inside
a cylinder closed by a movable piston X'. Work can then be done on this system
as the piston moves (although we assume that negligible heat is absorbed by the
system from the piston).

A very simple situation occurs when the volume V of the system changes
quasi-statically, i.e., when the piston moves so slowly that the system remains
always extremely close to an equilibrium situation. At any volume, the entire
isolated system (consisting of the system X and the piston X') must then always
be in its most probable situation, i.e., its entropy S* is always maximum. For
any infinitesimal quasi-static volume change, this entropy thus neither increases
nor decreases, i.e.,
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Fig. A-1, A system X (e.g., a gas in a
cylinder) interacting with a piston X’
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ds* = 0. (A-1)

Here S* = § + §', i.e., the entropy S* of the entire system is equal to the sum of
the entropies S of the system and S' of the piston. Thus (A-1) implies that

dS+dS'=0.

But dS' = 0 since the entropy of the piston remains unchanged. Thus we arrive
at the following conclusion:

in a quasi-static adiabatic process, dS=0. (A-2)

In other words, the entropy of a system remains unchanged in any infinitesimal
quasi-static process in which no heat is absorbed.

Entropy change in a general quasi-static process

Infinitesimal quasi-static process. Consider now any infinitesimal quasi-
static process in which some small work d'W may be done on the system in
changing its volume and in which the system may also absorb some small heat
d'Q. Then one can imagine this process carried out by means of the following
two successive quasi-static subprocesses:

(1) A first subprocess in which work may be done on the system in
changing its volume by the specified amount, but in which no heat is absorbed.
According to (A-2), the entropy of the system remain then unchanged.

(2) A second subprocess in which the volume of the system remains fixed
so that no work is done, but in which the system absorbs the heat d'Q.
According to (4F-8), the entropy of the system changes then by an amount dS =
d'Q/T if its absolute temperature is T.

The total entropy change of the system in this entire infinitesimal quasi-
static process is thus due solely to the heat absorbed by the system in this

process. Hence we arrive at the following general conclusion:

Entropy-heat relation:
49 (A-3)

In any quasi-static infinitesimal process,  dS =

Entropy change between any two macrostates. The result (A-3) allows
one to find the entropy change between any two macrostates A and B of a
system. Indeed, consider any quasi-static process leading from A to B. Then
(A-3) implies that the corresponding entropy change is just the sum of all the
successive infinitesimal entropy changes in this process. Thus,

B
for a quasi-static process, Sp—Sa= J.% (A-4)
A

where d'Q is the infinitesimal amount of heat absorbed by the system when its
absolute temperature is T.
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In particular, (A-4) implies that the entropy of a system remains unchanged
in any quasi-static process in which no heat is absorbed.

Importance of the quasi-static condition. It is crucially important to note
that all the preceding results are valid only if a process is quasi-static (i.e., if it is
carried out so slowly that the system remains always extremely close to an
equilibrium situation). The following examples illustrates the distinction
between rapid and quasi-static processes.

Example: Sudden expansion of a gas

Fig. A-2 shows a gas in a thermally insulated cylinder. The gas is
initially in equilibrium (as indicated in Fig. A-2a) and the piston is then
very suddenly pulled out. Immediately afterwards the gas is then still
in its previously occupied region of the cylinder (as indicated in
Fig. A-2b) and no work has been done on the gas by the piston which
has lost contact with the gas. Then the gas quickly spreads out
throughout the entire larger volume now available to it (to attain the
final situation indicated in Fig. 2a-c). During this process the piston
remains at rest so that no work is done on the gas.

During the entire process, the internal energy E of the gas remains
then constant (since the gas absorbs no heat and no work is done on it).
However, the entropy S of the gas has increased (since the gas now
occupies a larger volume so that more possible positions have become
available to its molecules).

Example: Quasi-static expansion of a gas

Consider the same gas, in the same thermally insulated cylinder,
which is again in the same initial equilibrium situation illustrated in
Fig. A-3a. However, now the piston is very slowly moved outward
until one reaches the situation, illustrated in Fig. A-3c, where the
volume of the gas is the same as it was in Fig. A-2c.

In this case, the volume of the gas has again increased. But, since
this increase has occurred against the opposing fore exerted by the
piston, negative work has been done on the gas by the piston. Hence
the internal energy E of the gas has decreased. The increased volume
of the gas causes its entropy to increase (since there are more possible
positions available to the gas molecules). However, the decreased
internal energy of the gas causes its entropy to decrease (since there are
fewer possible velocities available to the molecules). There are then
two compensating effects affecting the entropy. The net result is thus

consistent with the conclusion (A-4) that the entropy of the gas remains
unchanged in this quasi-static process where not heat is absorbed.

Problems

{A-1]1 Entropy changes under various conditions
A system has a constant heat capacity Cy when the system is maintained at
constant volume, and has a constant heat capacity Cp when it is maintained at
constant pressure.
(a) Suppose that the system’s absolute temperature is slowly changed from T,
to T while its volume is kept constant. Does the system’s pressure then

change? Is non-zero work done on the system? What is the entropy change
of the system?
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(b
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Fig. A-2. Sudden expansion of a gas.
(a) Initial situation. (b) Situation

immediately after the piston has been
moved. (c) Final situation.
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Fig. A-3. Quasi-static expansion of a gas.
(a) Initial situation. (b) Intermediate
situation. (c) Final situation.
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(b) Suppose that the system’s absolute temperature is slowly changed from T,
to Ty while its pressure is kept constant. Does the system’s volume then

change? Is non-zero work done on the system? What is the entropy change
of the system? <a-5>

B. Implications of the entropy-heat relation

The relation (A-3) indicates how the entropy change dS is related to the heat
d'Q absorbed by the system. But this heat can be related to the system’s change
dE of internal energy. Indeed, by the thermodynamic energy law

dE=d'W +d'Q
or d'Q=dE —d'W = dE + pdV. (B-1)

Thus the relation (A-3) implies that

ds =dE_+TM . (B-2)

This thermodynamic relation has many applications. In particular, one may use
it to obtain knowledge about many important properties of a system if one
knows how the system’s entropy depends on its energy E and volume V.

Properties of the internal energy. Suppose that the volume V of a system
is kept constant so that dV = 0. Then (B-2) implies that dS = dE/T or that

dsy _1 .
(dE ST (B-3)

If one knows how the entropy S depends on E and V, this relation can then be
used to determine how the energy E of the system depends on its absolute
temperature T and volume V.,

Properties of the pressure. Suppose that the energy E of a system is kept
constant so that dE = 0. Then (B-2) implies that dS = (p/T) dV or that

(j—s‘;);%. (B-4)

If one knows how the entropy S depends on E and V, this relation can then be
used to determine how the energy p of the system depends on its absolute
temperature T and volume V.

Applications to the properties of an ideal gas
Entropy of an ideal gas. Consider an ideal gas consisting of N molecules

in a container of volume V and having a total energy E. As discussed in
Section 4E, the number Qv of basic states, available to the gas molecules

because of all their possible positions, is
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Qy=cVN (B-5)
where c is some constant of proportionality.

The number Qg of basic states, available to the gas molecules because of all
their possible velocities, depends on their total energy E. However, it does not
depend on the volume of the gas since the potential energy of intermolecular
interaction of an ideal gas is negligible and hence unaffected by any change in
the average distance between molecules. Thus

Qg depends only on E (but not on V). (B-6)
In particular, as discussed in Section 4E,
Jor a monatomic ideal gas, Qg =c E3N2 B-7)
where c' is another constant of proportionality.

The total number Q of basic states available to an ideal gas is the product of
the number of states due to possible molecule positions and the number of states
due to possible molecule velocities. Thus

Q=Qy Qp=c VN Q. (B-8)

Hence the entropy of the ideal gas is

| S=kInQ=k(Inc) +k NInV + k InQg. B-9)

Energy of an ideal gas. The properties of the energy of the ideal gas can
now be obtained from (B-3). By applying this general relation to the entropy
(B-9), we find that

Here the left side involves only the energy E of the gas, but not its volume.
Hence (B-10) shows that the energy E of the gas is related to its absolute
temperature T, but does not depend on its volume. Hence we reach the
following general conclusion:

l For any ideal gas, E depends on T (but not on V). | (B-11)

Energy of a monatomic ideal gas. In the special case of a monatomic
ideal gas, (B-7) implies that

InQg =In¢'+ (3N/2) InE (B-12)
Here (B-10) then yields the more specific result

k (3N/2)

Hi=

o=

so that = % NkT. (B-13)



Pressure of an ideal gas. The properties of the pressure of an ideal gas can
now be obtained from (B-4). By applying this general relation to the entropy

(B-9), we find that
Ny _p
k (V) =T

so that pV =N KkT. (B-14)

This is the ideal-gas law which we obtained in Chapter 6 by much more complex
arguments requiring a detailed analysis of molecular collisions with a wall.

Simplicity and generality of entropy considerations. Note that we have
now been able to use much simpler arguments to obtain the ideal-gas law as well
as the result (B-11) about the independence of internal energy on volume.

Furthermore, these arguments have been more general -- showing immediately
that these results are applicable to any ideal gas, even if it is not monatomic.

Problems

[B-1] Entropy of a monatomic gas

Consider a monatomic ideal gas of N molecules. Starting with the relations
(B-9) and (B-12), answer the following questions.

(a) Write a relation indicating how the entropy S of this gas depends on its
volume V and internal energy E. (Your relation may involve some
undetermined additive constant independent of V and E.)

(b) Write a relation indicating how the entropy S of this gas depends on its
volume V and absolute temperature T. (Your relation may involve some
undetermined additive constant independent of V and T.)

(c) The principle (A-4) asserts that the entropy of the adiabatically insulated
gas should remain constant if the volume of the gas is quasi-statically
changed. Use this principle, and the result obtained in part b, to determine
how the absolute temperature T of the gas depends on its volume V during
such an adiabatic process. Is your answer consistent with that previously
obtained in Problem E-2 of Chapter 7? <a-9>

[B-2] Adiabatic temperature change of an ideal gas
Consider any ideal gas (whether monatomic or more complex).

(a) Suppose that the volume of this gas is kept fixed. If the absolute
temperature of the gas is larger, is the entropy of the gas then larger,
smaller, or the same?

(b) Suppose that the temperature of this gas is kept fixed. If the volume of the
gas is larger, is the entropy of the gas then larger, smaller, or the same?

(c) If the volume of the gas is quasi-statically increased while the gas is
adiabatically insulated, the entropy of the gas must remain unchanged. If
the temperature of the gas remained unchanged despite the increase of its
volume, would its entropy increase, decrease, or remain unchanged? What
then must actually happen to the temperature of the gas so as to keep its
entropy unchanged?

(d) According to the preceding reasoning, should an adiabatic expansion of a
gas increase or decrease its absolute temperature? Conversely, should an
adiabatic compression of a gas increase or decrease its absolute
temperature? <a-2>
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[B-3] Adiabatic temperature change of a rubber band
Consider a partially stretched rubber band

(a) Suppose that the length of this rubber band is kept fixed. If the absolute
temperature of the band is larger, is the entropy of the band larger, smaller,
or the same?

(b) Suppose that the temperature of this rubber band is kept fixed. If the length
of the band is made larger, does its entropy become larger, smaller, or
remain the same? (A rubber band consists of chains of polymer molecules
which are randomly coiled when the band is unstretched and which become
more nearly aligned when the band is stretched.) <h-3>

(c) If the length of the rubber band is quasi-statically increased while the band

is adiabatically insulated, the entropy of the band must remain unchanged.
If the temperature of the band remained unchanged despite the increase of
its length, would its entropy increase, decrease, or remain unchanged?
‘What then must actually happen to the temperature of the band so as to keep
its entropy unchanged?

(d) According to the preceding reasoning, should an adiabatic lengthening of a
rubber band increase or decrease its absolute temperature? Conversely,

should an adiabatic shortening of a rubber band increase or decrease its
absolute temperature? <a-7>

C. Principles of statistical thermodynamics

We have now obtained essentially all the basic principles of the science of
statistical thermodynamics. Let us then review the basic hypotheses from which
these principles are derived and then explicitly summarize these principles for
future use.

Basic hypotheses

All our considerations of large-scale systems have been based on the
following two basic hypotheses:

Atomic structure of matter. Any large-scale system consists
of atomic particles described by the laws of mechanics. €D

The second basic hypothesis is the statistical postulate introduced in
Sec. 3B.

Statistical equilibrium postulate. The probabilities of finding
an isolated macroscopic system in its possible basic states| (C-2)
change with time until they reach an unchanging equilibrium
situation where they are equal.

Principles of macroscopic thermodynamics

Starting from the preceding basic hypotheses, we have been able to infer the
following general principles. These are completely independent of the nature of
the atomic particles constituting the large-scale systems of interest. Hence these
principles can be applied to make inferences about the macroscopic properties of

To verify this prediction, hold a stretched
rubber band against your lips and quickly
reduce its length. Your lips are sufficiently
sensitive that they should then be able to

detect the temperature change of the band.

(!f you change the length quickly enough,
the band Is approximately adiabatic since
therae is not enough time for much heat
transfer to occur between the band and its
surroundings. On the other hand, the
process is slow enough that the molecules
in the band are at any instant nearly in
internal equilibrium at a well-defined
temperature.)

Indeed, in the 19th century most of these
principles were inferred from large-scale
observations long before there was
significant knowledge about atoms or
molecules. Theses principles formed the
laws of “classical thermodynamics”.



systems without requiring any specific knowledge about the atoms or molecules
in these systems.

Thermal equilibrium. One very simple principle follows from the
following conclusion obtained in (4A-11):

Mutual thermal equilibrium (zeroth law of thermodynamics).
If two systems are each in thermal equilibrium with a third| (C-3)
system, they will be in thermal equilibrium with each other.

This principle allows one to use thermometers to determine whether two systems
will be in thermal equilibrium or not.

Energy law. A very important principle is the energy principle expressed
in (2B-6) so as to recognize the distinction between work and heat.

Thermodynamic energy law (first law of thermodynamics):

AE=W +Q. €4

This law asserts that any large-scale system can be characterized by a quantity E,
its internal energy, which remains unchanged when the system is isolated.
However, when this system changes by interacting with other systems, the
change of its energy between any two macrostates is due to the large-scale work
done on the system and to the heat absorbed by the system (i.e., to purely
atomic-scale work done on it).

Entropy and absolute temperature. The next central principle specifies
the properties of the entropy and consists of two parts:

Entropy law (second law of thermodynamics):

C-
In any small quasi-static process, dS =d'Q/T. (a) 3

For any isolated system, AS 20 M)

Part a of this law is just the statement (A-3) previously obtained in the present
chapter for any infinitesimal quasi-static process. This statement allows one to
determine changes of entropy and relates these to the absolute temperature T.

By contrast, part b of the entropy law applies to any process of an isolated
system. In that case, the system always tends to approach a much more probable
macrostate so that its entropy increases (i.e., so that the change AS of its entropy
is positive). The exception occurs when the system remains in equilibrium or
when a process is performed so slowly that the system remains always extremely
close to equilibrium. In that case the entropy of the system remains unchanged
(i.e., the change AS of its entropy is zero).

The preceding statement also indicates that a process in which the entropy
of an isolated system increases is irreversible since reversal of the process would
require the entropy to decrease [something which, according to (C-4b), is

8. Interactions involving heat and work
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was historically realized only after the other
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already been formulated.
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impossible (or unrealistically improbable).] On the other hand, a process in
which the entropy remains unchanged (e.g., a quasi-static process) is reversible.

Statistical significance of the entropy. According to (4A-2), the
probability P of finding an isolated system in a particular macrostate is
proportional to the number Q of possible basic states available to the system in
this situation, i.e.,

Poc Q (C-6)

But the definition S = k InQ of the entropy implies that Q = ¢5/K- Hence (C-6)
leads to the following principle relating the entropy to probabilities:

Probability and entropy. The probability P of finding any

isolated system in a macrostate of entropy S is given by (C-7)
P o 5k

For example, suppose that the system’s entropy in a macrostate A is Sp and
its entropy in a macrostate B is Sg. Then the ratio of the probabilities of finding
the system in these two states can be found from the difference of the entropies
in these two states, i.e.,

Sa/k

P, € -
Pa_ SB/k)=e(SA Sk -8)

P e

Entropy and basic atomic states

According to its definition (4E-6), the entropy S of a system is related to the
number  of possible basic states available to the system when it is described on
an atomic scale. This definition provides a relation between the entropy, whose
macroscopic properties are specified by (C-5), and the atomic properties of a
system.

Atomic specification of entropy.

C-7
S =k InQ. ©7

If the atomic properties of a system are sufficiently well known, it is then
possible to calculate its entropy and thereby to infer many of its macroscopic
properties. (For example, in Section B we did this in the case of an ideal gas
which is such a simple system that its entropy could be readily calculated.)

Historical notes.

The suggestion that heat is a form of energy was first advanced in
1798 by the American-British physicist Benjamin Thompson (better
known as Count Rumford, 1753-1814). Around 1847 this suggestion
was put on a firm experimental basis by the English physicist James
Prescott Joule (1818-1889). The thermodynamic energy law was
formulated around 1842 by the German physicist Julius Robert Mayer
(1814-1878) and better established around 1847 by the German
physiologist and physicist Hermann L. F. Helmholtz (1821-1894).

This principle was not a part of classical
thermodynamics. However, it too is totally
independent of the nature of the atomic
partticles in the system.
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In 1824 (even before the recognition of heat as a form of energy)
the young French engineer Nicolas L. S. Carnot (1796-1832) published
pioneering work analyzing how heat engines convert heat into work.
Around 1850 this work led to the formulation of the second law of
thermodynamics by the German physicist Rudolf J. E. Clausius (1822-
1888) and the Scottish physicist William Thomson (also known as Lord
Kelvin, 1824-1907). In particular, they used purely macroscopic
considerations to introduce the concepts of entropy and absolute
temperature. In this way, they established “classical thermodynamics™
as a macroscopic science based on the three thermodynamic laws (C-3),
(C-4), and (C-5).

The motion of atoms in gases was theoretically examined around
1860 by the Scottish physicist James Clerk Maxwell (1831-1979). An
atomic theory of gases, based on statistical considerations, was then
fully developed in the 1870s by the Austrian physicist Ludwig
Boltzmann (1844-1906). He thereby founded the science of “statistical
mechanics” for dealing with macroscopic systems from an atomic point
of view. In this process, he also introduced the atomic specification of
the entropy, i.e., the relation S =k InQ.

In the 1870s the American physicist Josiah Willard Gibbs (1839-
1903) expressed classical thermodynamics in a powerful mathematical
form and applied it to a wide range of physical and chemical problems.
Later he also formulated statistical mechanics in 2 more general form
and showed its connection to classical thermodynamics. He thereby
established a unified theory of “statistical thermodynamics”. His work,
done in isolation in the United States, only came to be well recognized
in Europe in the 1890s. Despite later modifications by quantum
mechanics, his theoretical framework still provides the basis of present-
day scientific work dealing with macroscopic systems.

D. Summary and Review

Definitions

Entropy:

S=kInQ

(where €2 = number of basic states available to atomic particles)

Import

ant knowledge (independent of nature of atomic particles):

Thermodynamic energy law (first law of thermodynamics):

Change of internal energy: AE=W +Q
(where W = work, Q = heat).

Entropy law (second law of thermodynamics):

In any small quasi-static process, dS =d'Q/T.
For any isolated system, AS 20.
Probability and entropy:

For an isolated system P ec Qo &5k,

it
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New abilities
You should now be able to do the following:

(1) Calculate entropy changes for any quasi-static process.
(2) Apply all the principles of statistical thermodynamics jointly to solve
problems like those included in this chapter.

Problems

[D-11 Possible temperature changes of a system

If any of the following processes is-possible, give a speciﬁc.example
illustrating this possibility. Otherwise, prove that the process is impossible.

(a) Can the absolute temperature of a system change even if no heat is absorbed
or given off by the system?

(b) Can the absolute temperature of a system change even if its internal energy
remains unchanged?

(¢) Can the absolute temperature of a system change even if its entropy remains
unchanged? <a-6>

[D-2] Different expansions of an ideal gas

An ideal gas is contained in a cylinder closed by a piston. The volume of
the gas can be increased under the following conditions listed in Fig. D-1:
(1) By moving the piston slowly while keeping the gas in thermal contact with a
heat reservoir so that its temperature remains constant. (2) By moving the piston
slowly while the gas is adiabatically isolated. (3) By moving the piston
extremely rapidly while the gas is adijabatically isolated.

For each of these three processes, the absolute temperature of the gas
changes by an amount AT, its pressure changes by an amount Ap, its internal
energy changes by an amount AE, and its entropy changes by an amount AS. In
the table of Fig. D-1, indicate whether each of these changes is positive,
negative, or zero. (Use a + sign to indicate that the change is positive, a — sign
to indicate that it is negative, and 0 to indicate that it is zero.) <a-12>

[D-3] Entropy and volume change of an ideal gas

One mole of an ideal gas is maintained at a constant absolute temperature T
since it is in thermal contact with a heat reservoir at that temperature. The
volume of the gas is then slowly changed from V, to Vsg.

(a) What is the work done on the gas in this process?

(b) What is the change of internal energy of the gas in this process?

(c) What is the heat absorbed by the gas in this process?

(d) Use the knowledge of this heat to find the change of entropy of the gas in
this process.

(e) Use the general result (B-9) to calculate the change of the entropy of the gas

in this process. Does your answer agree with that obtained in part 47
<a-4>

(D-4] Entropy change in an isothermal expansion of a gas

One mole of an ideal gas, contained in the cylinder illustrated in Fig. D-2, is
maintained in contact with a heat reservoir so that it remains at a constant
absolute temperature T. The piston is now slowly moved so as to double the
volume of the gas.

(2) What is the work done on the gas in this process?

(b) What is the change of internal energy of the gas in this process?

(c) What is the heat absorbed by the gas in this process?

(d) What is the resulting change of the entropy of the gas in this process?
(e) What is the change of the entropy of the heat reservoir in this process?

1

( )
AT| Ap | AE | AS

slow, isothermal

slow, adiabatic

fast, adiabatic

J

Fig, D-1. Changes resulting from expanding
a gas under various conditions.

Fig. D-2. Isothermal quasi-static expansion
of an ideal gas. (a) Initial state. (b) Final
state,
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(f) What is the change of entropy of the universe as a result of this process?
(g) Is this process reversible or irreversible? <a-10>

[D-5]1 Entropy change in a free expansion of a gas

One mole of an ideal gas, at an absolute temperature T, is confined by a
partition within the left half of the adiabatically isolated container illustrated in
Fig. D-3. When the partition is removed, the gas spreads throughout the entire
container so that its volume is doubled.

(a) What is the work done on the gas in this process?

(b) What is the change of internal energy of the gas in this process?

(c) What is the heat absorbed by the gas in this process?

(d) What is the resulting change of the entropy of the gas in this process? Is
this change of entropy larger than, smaller than, or the same as the change
of entropy of the isothermally expanded gas in the preceding problem?
<h-2>

(e) What is the change of entropy of the universe as a result of this process?

(f) Is this process reversible or irreversible? <a-1>

[D-6]1 Temperature-entropy diagram of a cyclic process

The macroscopic state of a system may be specified by its entropy S and
absolute temperature T. The graph in Fig. D-4 indicates a cyclic process ABCA
of a system specified in this way. Express the answers to the following
questions in terms of the absolute temperatures T, and Ty of the system and in
terms of its entropies S, and Sc.

(a) What is the heat absorbed by the system in the process AB during which the
absolute temperature of the system changes from T, to T while its entropy

S A remains constant?

(b) What is the heat absorbed by the system in the process BC during which the
entropy of the system changes from S, to S¢ while its absolute temperature

Ty remains constant?

(c) What is the heat absorbed by the system in the process CA represented by
the straight line CA in the graph of Fig. D-§? <h-I>

(d) Is the total heat absorbed by the system during the entire process ABCA
pos.itive, negative, or zero? Is the total work done on the system during this
entire process positive, negative, or zero?

(¢) What is the work done on the system during this entire process? <g-3>

8. Interactions involving heat and work

(2)

(b)
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Fig. D-3. Adiabatic free expansion of an
ideal gas. (a) Initial state. (b) Final state.
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Fig. D-4. Temperature entropy diagram of a
cyclic process.



