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Large-scale systems can usefully be characterized by some thermal
properties relating heat and temperature. This chapter discusses one such
important property, “heat capacity”, that characterizes any system or substance
in equilibrium. It will also briefly mention another property, “thermal
conductivity”, that specifies the rate at which heat is transferred when a
temperature difference exists in a non-equilibrium situation.

A. Heat capacity

Definition of heat capacity. When a small amount of heat d'Q is absorbed
by a system, its absolute temperature changes by a corresponding small amount

dT. The relation between d'Q and dT is conveniently described by a quantity
called the system’s heat capacity.

Def: | Heat capacity: The heat capacity Cy of a system (when some
other property y of the system remains constant) is a quantity
describing the relation between the heat d'Q absorbed by the |  (A-1)
system and its corresponding temperature change dT.
Quantitatively it is defined as the ratio

= (4Q
- (22)..

The quantity y which is kept fixed has here been explicitly indicated by the
subscript. (For example, this quantity might be the system’s volume V or its
pressure p.)

The definition (A-1) implies that
dQ=CdT (A-2)

(where we have not bothered to indicate explicitly what other quantity y is kept
constant).

For example, if a system’s heat capacity C is large, a given small
temperature change dT requires a larger amount of absorbed heat d'Q than if the

The symbol d' (with a prime omamenting the
letter d)-is here used to denote any
Infinitesimal quantity even if it is not an
infinitesimal difference. Thus d'Q is just an
infinitesimally small amount of heat, but
does not denote any difference.
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system’s heat capacity is small. Conversely, (A-2) implies that dT = d'Q/C. If
the heat capacity is large, a given small heat d'Q absorbed by the system
produces thus a smaller temperature change dT than if the system’s heat capacity
is small.

Units of heat capacity. According to its definition (A-1), the units of heat

capacity are those of a heat divided by an absolute temperature, i.e., the units are
joule/kelvin.

Temperature dependence of the heat capacity. Ordinarily, the heat
capacity C itself depends on the absolute temperature T and the other properties
of the system. For instance, suppose that a larger amount of heat is required to
raise a system’s temperature from 500 K to 501 K than is required to raise its
temperature from 300 K to 301 K. Then the heat capacity of the system would
be larger at 500 K than at 300 K.

For example, Fig. A-1 shows how the heat capacity of a piece of copper (c J/K) ' )
metal varies with its absolute temperature. (Note that this heat capacity becomes 30
nearly constant at temperatures near to, or above, room temperature.) — e

20

According to (A-2), the relation d'Q = C dT is valid at any temperature T.
The heat capacity C at this temperature relates then any small temperature 10
change dT to the correspondingly small heat d'Q absorbed by the system. /

Suppose that one wants to find the total heat Q absorbed by the system 0 0 200 200 500
when its temperature changes by a large amount, from some initial temperature L T (X) D

T, to some final temperature Tg. Then one needs only to add up the small

; : Fig. A-1. Temperature dependence of the
amount's of heat absorbed by the system as its tempef'atu.re is changed by heat capacity, at constant volume, of a mole
successive small amounts. Thus the total heat absorbed is simply equal to the  of copper metal.

following sum

B B
Q= [dQ= [CdT. (A-3)
A A

In the special case where the heat capacity is temperature-independent, C is
merely a constant factor in this sum. Then (A-3) yields the following simple
result: ‘

B
IfCis constant, Q= cp{ dT=C (Tg-Ta) (A-4)

since the sum of the successive small temperature changes is just equal.to the
total temperature change (Tg — Ta).

Heat capacity at constant volume. Suppose that the volume V of a system

is kept constant. (For example, suppose that the system is a gas within a
container of fixed size.) Then the heat capacity Cy at constant volume is

defined as the ratio

Cy= (%’%)v. (A-5)
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relating the heat d'Q absorbed under these conditions to the resulting
temperature change dT. But, no work is done on the system if its volume is kept
fixed (and no other work is done on it by rotating paddle wheels or other means).
Hence the thermodynamic energy law implies that

dE=dW+dQ=0+dQ, (A-6)

so that the heat d'Q absorbed by the system is just equal to the change dE of its
internal energy. Hence (A-5) is simply equal to

dE

CV = dT V'

(A-T)

The heat capacity at constant volume describes, therefore, the relation
between the energy change dE and temperature change dT of a system.
Correspondingly, (A-7) implies the relation

dE = Cy dT. (A-8)

As pointed out in Chapter 4, the absolute temperature of a system increases
when its internal energy increases. Accordingly, (A-7) implies that the heat
capacity at constant volume of any such system must be positive.

Heat capacity at constant pressure. In many cases, it is the pressure
(rather than the volume) which remains constant when heat is absorbed by a
system. For example, when heat is absorbed by a cup of tea in a room, or to a
gas within a balloon in the room, the pressure of the system remains equal to the
surrounding atmospheric pressure. ’

‘When a small amount of heat d'Q is absorbed under conditions of constant
pressure p, some work d'W = —p dV is done on the system if the volume of the
system changes by some amount dV. The thermodynamic energy law then
implies that

dE=d'W+d'Q
or dQ=dE-d'W=dE +pdV. (A-9)

Suppose that the temperature of a system changes by a small amount dT. The
heat d'Q absorbed by the system when its pressure is kept constant is thus
different than when its volume is kept constant (because work is done by the
pressure in the first case, but not in the second). Correspondingly, the heat
capacity Cp at constant pressure

dE
Cp= (dT o (A-10)
is different from the heat capacity Cy at constant volume specified by (A-7).

In the case of a solid or liquid, the volume change resulting from a small
temperature change is very small so that the work done by the surrounding
pressure is-nearly negligible. Hence.the heat capacity-Cp at constant pressure is.
nearly the same as the heat capacity Cy at constant volume. But in the case of a

To indicate explicily that the volume is kept
constant when the temperature is changed,
(A-7) could also be written as the partial
derivative (dE/3T)y. But this is not
necessary since the subscript V already
indicates that the volume is to be kept fixed.



gas, such a small temperature change results in an appreciable change of
volume. Correspondingly, the heat capacity Cp, at constant pressure of a gas is
appreciably different from its heat capacity Cy at constant volume.

Problems

[A-1] Heat capacity of a lead block

It is found that 195 J of heat must be absorbed by a 3.00 kg lead block to
raise its temperature from 22.00 °C to 22.50 °C.

(a) By what amount does the absolute temperature of the lead block change in
this process?
(b) What is the heat capacity of this lead block?

(c) What would be the heat capacity of a lead block having a mass of 1.00 kg?
<h-5> <a-8>

[A-2] Heating a cup of water
To make tea, 0.20 liters of water in a cup needs to be heated from a

temperature of 25 °C to 100 °C. The heat capacity of this amount of water is
approximately constant in this temperature range and equal to 840 J/K.

(a) How much heat must be absorbed by the water to change its temperature by
the desired amount?

(b) An electrical heating coil.supplies heat to the water at the rate of 500 watt
(i.e., 500 joule/second). How long a time is required for this coil to heat the
water by the desired amount? <a-3>

[A-3] Comparing temperature changes and absorbed heats of two systems

The heat capacity Cx of a system X is 100 times larger than the heat
capacity Cy of a system Y.

(a) Suppose that the same amount of heat is added to both systems. How much
larger then is the temperature rise of system X compared to the temperature
rise of system Y?

(b) Suppose that one wishes to add heat to each system so as to raise the
temperature of each by the same amount. How much larger then must be
the heat added to system X compared to the heat added to system Y?
<a-10>

[A-4] Heat capacities of a copper block

The heat capacity of a copper block at room temperature (293 K) is 350 J/K.

The heat capacity of the same block at the temperature of liquid nitrogen (77 K)

is 170 /K.

(a) How much heat must be absorbed by this block, originally at liquid-nitrogen
temperature, to raise its temperature by 1.0 K?

(b) Suppose that this same amount of heat is absorbed by the block when it is
originally at room temperature. When then is the resulting increase in the
temperature of the block? <a-6>

[A-5] Comparison of Cy and Cp for an ideal gas

The heat capacity of an ideal gas, maintained at constant volume, is Cy.
Suppose that the absolute temperature of this gas is increased by a small
amount dT.

(a) What is the resulting heat absorbed by the gas? What is the resulting
increase of the internal energy of the gas?

Suppose that this gas is, instead, maintained at the constant pressure of the
surrounding atmosphere so that its volume can change. Under these conditions
the absolute temperature of the gas is again increased by the same small amount
dT as before. ) )

7. Heat capacity and heat transfer
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(b) Is the resulting increase of the internal energy of the gas then larger than,

smaller than, or the same as under the previous conditions where the volume
of the gas remained constant? Why? <h-2>

(¢) Does the volume of the gas then increase, decrease, or remain the same?
Why?

(d) Is the work done on the gas by the surrounding atmosphere then positive,
negative, or zero?

(e) Is the heat absorbed by the gas under these conditions of constant pressure
larger than, smaller than , or the equal to the heat absorbed by the gas under
the previous conditions of constant volume? Why? <h-7>

(f) Is the heat capacity Cp of the gas at constant pressure larger than, smaller
than, or equal to the heat capacity Cy of the gas at constant volume? <a-2>

B. Specific heat

Heat capacities and specific heats

Quantities proportional to the amount of a substance. A substance (like
the water inside a container or the metal inside a copper block) is homogeneous
because any region within such a substance has the same properties as any other
region of the same size. Suppose that the size of a system, consisting of such a
homogeneous substance, is three times larger than that of another system
consisting of this substance. Then the number N of particles in this system will
also be three times larger and its internal energy E will also be three times larger.
Similarly, the amount of heat that needs to be absorbed by the system to raise its
temperature by a degree (i.e., the heat capacity C of the system) will also be

"three times larger. In short, properties like the internal energy E or the heat
capacity C of such a system are simply proportional to the amount of substance.

Specific heat per mole. By dividing any such quantity by the amount of
the substance, one obtains a quantity which is characteristic of the substance but
independent of its amount. For example, if one divides the specific heat C of v
moles of a substance by the number v of moles, one obtains a quantity c called
the specific heat per mole (or molar specific heat) of the substance.

Def: | Specific heat per mole: c= % . B-1)

Once the specific heat c of a substance has been determined by measurements or
calculation, the heat capacity of any amount of the substance can immediately be

found. Indeed, the heat capacity C of v moles of this substance is then simply
equal to

C=vec. B-2)

Specific heat per unit mass. Similarly, one may divide the heat capacity C
of a mass M of the substance by this mass. Thus one obtains the specific heat ¢

per unit mass of this substance.

(B-3)

Zla

Def: | Specific heat per unit mass: c=

We use ¢ (anr underlined-c) to distinguish the~
specific heat per unit mass from the specific
heat ¢ per mole.
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This specific heat per unit mass is again a quantity characteristic of the
substance, but independent of its amount. Once this specific heat ¢ is known,

the heat capacity of any mass M of the substance is then simply equal to

C=Mc (B-4)
Fig. B-1 indicates the measured specific heats of some common substances. a )
Substance p Sp
Molar specific heat of an ideal gas Umol )1 (g B)
According to (A-7), the molar specific heat cy, at constant volume, of any Aluminum 24.6 910
substance specifies how rapidly the internal energy of a mole of this substance Copper 248 390
increases with its absolute temperature. The specific heat of any such substance Iron 263 470
can thus readily be found if one knows how the internal energy of this substance Lead 269 130
depends on its absolute temperature. - Silver 25.3 234
Mercury 271 138
Monatomic ideal gas. One mole of any substance contains N; molecules Salt (NaCl) | 51.4 879
(where N, is Avogadro’s number). A particularly simple such substance is a Water 75.4 4190
monatomic ideal gas. According to (6A-5), the internal energy E of one mole of Ice 36.5 2000
such a monatomic gas is merely equal to its kinetic energy K, i.e., ¥Glass 840 )
E=K= %Na kT. =% RT (B-5) Fig. B-1. Specific heats (at constant
pressure) of some common substances at
room temperature.

where R = Nk is the gas constant. The heat capacity cy at constant volume of
one mole of such a monatomic gas is then, by (A-7) simply equal to

dEY _3
o =3R B-6)

Our theory thus predicts that the molar specific heat cy of any monatomic
ideal gas (e.g., of any gas such as helium, neon, argon, or xenon) has the same
temperature-independent value equal to

for any monatomic gas, cy =§3 R =12.5 J/(X mole) B-7

where we have used the value (6D-8) of the gas constant R.

Polyatomic ideal gas. The internal energy E of a polyatomic gas consists
not only of the kinetic energy K of center-of-mass motions of all the molecules,
but also of internal molecular energy Epo] (due to kinetic and potential energy
of the atoms moving relative to each other within each molecule.) As indicated
in (6A-7), one can thus write

E=K+Emol - ®-8)

According to (A-10), the heat capacity cy of a mole of such a polyatomic gas is
again determined by how rapidly the internal energy E of the gas increases with
its temperature. But now this energy increases not only because the kinetic
energy K increases with temperature, but also because the internal molecular
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energy E,, increases with temperature. Hence the specific heat cy of a
polyatomic gas is larger than that of a monatomic gas.

Problems

[B-1] Heat capacity of copper
The atomic weight of copper is 63.5 and the molar specific heat of copper
metal is 24.8 J/mol XK.

(a) What is the mass of one mole of copper metal?

(b) How many moles of copper are contained in one kilogram of copper metal?
(c) What is the specific heat per kilogram of copper metal?

(d) What is the heat capacity of a piece of copper having a mass of 0.200 kg?

<a-30>
[B-2] Specific heat and change of internal energy

Iron metal near room temperature has a specific heat of 470 J/kg K which is
nearly temperature-independent. The volume'of the metal also varies negligibly
with its temperature.

(a) What is the heat absorbed by 0.65 kg piece of iron when its temperature is
increased by 25 K?
(b) What is the change of the internal energy of this piece of iron when its
temperature is increased by, this amount? <a-19>
(B-3] Specific heat of a diatomic gas
A diatomic gas (like nitrogen) consists of molecules each of which consists
of two atoms. At an absolute temperature T, the average kinetic energy of
center-of-mass motion of each of these molecules is %kT (i.e., the same as the

average kinetic energy of any monatomic gas molecule). However, each
diatomic molecule has.also an average kinetic energy of kT due to the rotation of
its two atoms around their common center of mass.

(a) What is the total internal energy of a mole of diatomic gas at the
temperature T? (Express your-answer in-terms of the:gas constant R.)

(b) What is the molar specific heat, at constant volume, of such a.diatomic gas?
(Express your answer in terms of the gas constant R.)

(c) What is'the numericai value of this specific heat? <a-13>

€. Heat capacities and thermal interaction

A knowledge of heat capacities allows.one to examine in greater detail the
thermal interaction between two systems.

For example, consider two systems X and X' which have initially respective
temperatures Tj and Tj'. These systems, while isolated from their surroundings,

are now brought into thermal contact with each other and finally reach
equilibrium at a common final temperature Tf. (See Fig. C-1.) Because the

energy of the total system remains constant, the energy changes of the two
systems during their thermal interaction must be related so that

AE + AE'=0. (C-1)

Consider the simple situation where-the volumes of these systems remain
essentially constant so that no work is done on them by any surrounding

/

Fig. C-1.” Thermal interaction between two
systems.




pressure. (For example, these systems might be solids or liquids whose volumes
change by negligible amounts when their temperatures change.) Suppose further
that the heat capacities, at constant volume, of these systems are C and C'
respectively, and essentially temperature independent. Then the energy change
of each system is merely equal to the heat absorbed by it. Correspondingly, the
energy relation (C-1) implies that

C(Tf-T) +C (Tg-Ty) =0. (C-2)

This relation can be used to determine various quantities of interest, as indicated
in the following paragraphs.

Determination of final temperature. Suppose that the heat capacities of
the two systems are known. If the initial temperatures of the systems are known,

the final temperature attained by the systems can then be predicted from (C-2)
since this relation can be solved for the final temperature Tf. Thus

_CTi +CTy
Tr="cic

Comparative measurement of heat capacities. Alternatively, suppose
that the heat capacity C of the system X is known. Then the heat capacity C' of
any other system X' can be determined by measuring the initial temperatures of

the systems and the final temperature attained by them after they have achieved -

mutual thermal equilibrium. Thus (C-2) implies that

v _f(If=Ti
c--c(3n)

Problems

[C-1] Final temperature of hot water poured into a bucket

A bucket, made of metal having a specific heat of 470 J/kg K, has a mass of
0.60 kg. Half a liter of hot water, having a mass of 0.50 kg, is initially at a
temperature of 90°C and is poured into the bucket which is initially at a
temperature of 20°C. The heat capacity of water is 4190 J/kg K. Negligible
heat flows from the surroundings to the bucket and the water in it. What then is
the final temperature of the water in the bucket?

The following illustrates the solution of this problem.

Sample solution
Situation: Bucket: M =0.60 kg, ¢ =470 J/kg K, T =20°C.
Water: M =0.50Kg, c=4190J/%kg K, 1=90°C.

Goal: Final temperature t' = ?
Apply energy law to system consisting of bucket and water:

(AE)bucket + (AE)water = 0. (1)
Bucket:

Initial state: 1t =20°C
4 AE=Mc¢ AT = (0.60 kg) (470 J/kg K) [(t' - 20°C) (K/°C))

AE =282 (1' - 20°C) (J/°C) @
Final state: Temperature T',

-— dm

7. Heat capacity and heat transfer

Analysis of problem

Construction of solution

Neglect any small volume changes, i.e., any
work done on the system by the surrounding
atmosphere.

The arrow symbol | indicates the process
leading between the states.
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Water:
Initial state: T =90°C
Ul AE=Mg¢ AT =(0.50 kg) (4190 J/kg K) [(t' - 90°C) (K/°C)]
AE = 2095 (1' - 90°C) (J/°C) ©))
Final state: Temperature T’

Putting (2) and (3) into (1):
282 (t'—20°C) + 2095 (t' - 90°C) =0

2377 %' = 194200 °C
“

[C-2] Cooling a silver ornament in water

A silver ornament, having a mass of 220 gram, has been immersed in a
cleaning solution at 100°C. It is then cooled by being dropped into 120 grams of
water, contained in an aluminum can having a mass of 150 gram. The water and
can are initially at a temperature of 20°C and are thermally well insulated from

their surroundings. What then is the final temperature of the ornament and the
water? <a-21>

[C-3] Measuring the specific heat of beryllium

To measure the specific heat of beryllium (whose atomic weight is 9.01), an
experimenter takes a 110 gram piece of the metal, at a temperature of 58.0°C,
and drops it into a thermally insulated container filled with 250 grams of water.
The initial temperature of the water and of the container (which has a heat
capacity of 185 J/K) is 23.0°C. Its measured final temperature, after the
beryllium has been dropped in, is 28.2°C.

(a) What is the specific heat per kilogram of beryllium metal near room
temperature?

(b) What is the molar specific heat of beryllium metal near room temperature?
<a-34>

[C-4] Thermal interaction with a heat reservoir

A system X is called a “heat reservoir” if its heat capacity C is very much
larger than the heat capacity C' of any other system X' with which it may be
placed into thermal contact. (For example, the water in a lake is a heat reservoir
compared to any pebble that might be thrown into the lake.)

Suppose that such a heat reservoir, at an absolute temperature Tj, is actually

brought into thermal contact with any such other system X' initially at an
absolute temperature T;'.

(a) What then is the final temperature of the heat reservoir after the systems
have come to thermal equilibrium?
(a) What is the final temperature of the other system? <a-39>

[C-5] Temperature measurement and thermometer heat capacity

A thermally insulated aluminum cup, whose heat capacity is 55.0 J/K, is
filled with 170 grams of ethyl alcohol (whose specific heat is 2430 J/kg-K). To
measure the temperature of the alcohol, one immerses in it a thermometer
having a heat capacity of 26.0 J/K. The thermometer is initially at the room
temperature of 22.7°C. After it has come to equilibrium with the alcohol, the
thermometer indicates a temperature of 52.4°C. What was the initial
temperature of the alcohol? <g-23>
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D. Heat capacity and entropy

A knowledge of a system’s heat capacity also allows one to obtain
information about its entropy.

Small entropy change. Consider any system of constant volume. The
absolute temperature of a system specifies how rapidly the entropy S of the
system increases with its energy E. Indeed, according to (4F-7) the absolute
temperature T of the system is defined so that a small change dS of its entropy is
given by

-4dE_dQ -
dS= T=T" (D-1)
Here dE is the system’s small energy change (or the small heat d'Q absorbed by
the system) when its absolute temperature T is changed by a small amount dT.

But d'Q = C dT if C is the system’s heat capacity at constant volume. The small
entropy change dS, resulting from a small temperature change dT, is thus

_cdr

ds T

(D-2)

where C is the system’s heat capacity at the absolute temperature T.

_ Large entropy change. Suppose that one wants to find a system’s change
of entropy when its absolute temperature is changed from a temperature T, to
any other temperature T;,. Then one needs merely to change the system’s
temperature slowly enough (quasi-statically) so that it is at any instant
essentially in equilibrium at some well-defined intermediate absolute
temperature T. Any small entropy change of the system is then given by (D-2).
Hence the system’s total entropy change is just the sum of its small entropy
changes during its successive small temperature changes. Hence

Tg
CdT

T (D-3)

SB—SA=
Ta

The change of a system’s entropy between any two temperatures can thus be
found if one knows the system’s heat capacity at all intermediate absolute
temperatures.

Correspondingly, it is also possible to measure experimentally the change of
a system'’s entropy. To do this, it is only necessary to measure its absolute
temperature and its heat capacity at various temperatures — and then to use this
information to calculate the sum (D-3).

Entropy change for constant heat capacity. The calculation of a system’s
entropy change becomes particularly simple if the system’s heat capacity is
independent of its temperature. In this case the heat capacity C in (D-3) is
merely a constant factor which can be taken outside the sum. Thus (D-3)
becomes

7. Heat capacity and heat transfer
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T o
Sg—S, = d?T=c fd(nT)
Th Ta

since dT/T = d(InT). But the sum of the successive small changes of the
logarithm is just equal to the total change of this logarithm so that

SB—SA=C(1I1TB—1I‘1TA).

Thus, if C is constant, Sg=-S,=C l(:lri). (D-4)
A

Problems

[D-1]1 Entropy change of a heat reservoir

A “heat reservoir” is a system whose heat capacity is so large that its
temperature remains essentially constant irrespective of how much heat it
absorbs from other systems. (For example, the air in a room is a heat reservoir
compared to a cup of coffee introduced into the room.)

Consider a heat reservoir whose absolute temperature is T. What is the
entropy change of this heat reservoir if it absorbs an amount of heat Q? <a-18>

[(D-2] Entropy change of a copper block

Near room temperature, the molar specific heat of copper metal is nearly
constant and equal to 24.8 J/mole K. The atomic weight of copper is 63.5.

(2) What is the heat capacity of a copper block which has a mass of 0.500 kg?

(b) When this block is dropped into boiling water, its temperature changes from
room temperature (20°C) to 100°C. As a result, does the entropy of the
copper block increase or decrease, and by what amount? <g-5>

[D-3] Entropy change of melting lead

Lead at atmospheric pressure melts at a temperature of 328°C. As the lead
melts, its temperature remains constant and the volume of the metal remains
nearly unchanged. But 2.47 x 103 J of heat must be absorbed by every kilogram
of the metal to change it from its solid to its liquid form.

When one kilogram of lead melts, does its entropy increase or decrease? By
what amount? <g-17>

[D-4] Thermal interaction between identical systems

Each of two identical systems has a temperature-independent heat capacity
C. Initially, one of the systems has an absolute temperature T; and the other one
has an absolute temperature T,.

 (2) What is the final temperature attained by these systems when they are
brought into thermal contact and finally reach thermal equilibrium?

(b) What is the change of the total entropy of both systems between the initial
situation and the final equilibrium situation? <a-12>

11
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E. Isothermal and adiabatic processes of ideal gases

There are many cases where a gas is compressed or expanded by changing
its volume. (For example, gasoline engines or steam engines work because
gases contained in cylinders change their volumes and thus move pistons.)
Quite often the change of volume occurs quasi-statically, i.e., sufficiently slowly
that the gas is at any time in internal equilibrium (and thus characterized by a
well-defined pressure and temperature uniform throughout the gas).

The process during which the volume of the gas is changed may, however,
occur under various conditions. The following are some examples:

(a) The- process may occur under isothermal conditions, i.e., under
conditions where the temperature of the gas remains always the same. (This can
be achieved by keeping the gas in thermal contact with another system which
has a much larger heat capacity and which experiences thus negligible changes
of temperature despite any heat exchanged with the gas.).

(b) The process may occur under adiabatic conditions, i.e., under conditions
where the gas is thermally insulated from its surroundings. (This can be
achieved by wrapping the gas container with fiberglass or some other insulating
material.)

Let us now examine these processes in the simple case of an ideal gas.

Isothermal process

In this case the absolute temperature of the gas remains unchanged, i.e.,
T = constant or AT =0. E-D

As the volume of the gas is changed, its internal energy remains unchanged
(since the internal energy of an ideal gas depends only on its temperature, but

not on its volume). The thermodynamic energy law then implies that
AE=W+Q=0 (E-2)
so that Q=-W. (E-3)

For example, when the gas expands so that its volume increases, the work W
done on the gas is negative. Hence positive heat is then absorbed by the gas
from its surroundings in order to maintain the gas at its constant temperature.

The ideal-gas law implies that the pressure p of the gas is related to.its
volume V so that

VvRT
P="5 -

v E-4)

Since the temperature T of the gas remains constant in this isothermal process,
the pressure of the gas is then inversely proportional to its volume. As the
volume of the gas increases, its pressure thus decreases accordingly.

7. Heat capacity and heat transfer

Since the molecules of a gas move with high
speeds (several hundreds of meters per
second), times of the order of milliseconds
may actually be quite sufficient to maintain a
gas in thermal equilibrium. A process
occurring during times longer than a few
milliseconds may thus be sufficiently slow to
be considered quasi-static.
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Adiabatic process

By contrast, consider the case where the gas is adiabatically isolated so that
it cannot absorb or give off any heat. Thus

Q=0 E-5)
and the thermodynamic energy law implies that
AE=W+Q=W., (E-6)

For example, when the gas expands so that its volume increases, the work W
done on the gas is negative. Hence the internal energy E of the gas
correspondingly decreases so that its absolute temperature T also decreases.

The pressure of the gas is still specified by the ideal-gas law (E-4).
However, when the gas expands, its pressure now decreases for two reasons,
both because its volume V increases and because its temperature T decreases.
When the volume of the gas increases, its pressure thus decreases more rapidly
than in the isothermal case where the temperature of the gas remains constant.
(See Fig. E-1.)

Infinitesimal adiabatic process

We should like to determine quantitatively how the volume, pressure, and
temperature of v moles of an ideal gas vary in an adiabatic process. To do this,
it is simplest to consider first such a process in which the volume of the gas is
slowly changed by an infinitesimal amount dV

Implications of the energy law. The thermodynamic energy law implies
that

dE=dW+d'Q=-pdV+0 E-7

since the work done on the gas is d'W = —p dV and since no heat is absorbed. If
the gas is ideal, its small energy change dE does not depend on the change dV of
its volume, but only on the change dT of its temperature. . Hence this energy
change is the same as if the volume were kept constant. Thus it is simply related
to the heat capacity of the gas at constant volume. Hence (E-7) implies that

veydT = -p dV
=B :
or dT = (vcv) av (E-8)

where cy is the molar specific heat of the gas at constant volume. This relation
shows explicitly how the temperature of the gas varies as a result of a small
change of its volume.

Implications of the ideal-gas law. We also know that the pressure,
volume, and temperature of the gas are related by the ideal-gas law so that

pV =VRT. (E-9)
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e ™
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Fig, E-1. Variation of gas pressure p with
volume V under isothermal and adiabatic
conditions.
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When the volume of the gas changes by an infinitesimal amount, the quantities
in (E-9) thus change correspondingly so that

d(pV) = VR AT
so that Vdp+pdV=vRdT. (E-10)
The relations (E-8) and (E-10) now allow us to eliminate one of the three

quantities V, p, or T in order to find a relation connecting the other two.

Adiabatic pressure-volume relation
Relation between small changes. For example, (E-8) relates the

temperature change dT of the gas to its volume change dV. Substituting this
result into (E-10), then yields

Vdp+pdV=-R (P—) av
Cv

or Vdp+ypdvV=0 (E-11)

where we have used 7y (the Greek letter gamma) as a convenient abbreviation to
denote the quantity

yo1+R_G*R
Cy Cy

(E-12)

If the heat capacity is temperature-independent, this quantity y is merely a
constant characterizing the particular gas. For example, in the case of a
monatomic ideal gas, the molar specific heat [previously calculated in (B-7)] is

¢y=2R. Thus (E-12) implies that

for a monatomic ideal gas, Y= = 1.67. (E-13)

W [

Relation between pressure and volume. The relation (E-11) between
corresponding infinitesimal changes of pressure and volume can be readily used
to relate these quantities themselves. Indeed, (E-11) can be divided by pV to
yield

dp 4V _
D +7V =0

so that the two terms involve p and V separately. By exploiting knowledge
about logarithms, this can be written in the form

dilnp) + yd(In V) =0
dilnp)+d(n V=0
d(lnp+InV) =0

d[In (pVNH]=0.

7. Heat capacity and heat transfer
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Hence the quantity In (pVY) remains unchanged so that

Jor an adiabatic process, pVY = constant. (E-14)

This result specifies quantitatively how the pressure of an ideal gas varies with
its volume in an adiabatic process.

Comparison with an isothermal process. B contrast, when the

temperature of the gas is maintained constant, the ideal-gas law (E-9) implies
that '

Jor an isothermal process, pV = constant. (E-15)

By its definition (E-12), the constant 7 is larger than 1. Hence (E-14) implies
that the pressure of the gas varies more rapidly with its volume in an adiabatic
process than in an isothermal process. This result is in accord with the
qualitative conclusion reached earlier in this section and illustrated in Fig. E-1.

Problems

[E-1] Pressure change due to compression of a gas
An ideal gas, which has a volume V, and a pressure po, is slowly
compressed so that its final volume is Vy/4.

(a) Suppose that the gas is argon which is monatomic. What then is the final
pressure of the gas if the compression is done isothermally? What is this
final pressure if the compression is done adiabatically? (Express your
answers in terms of the initial pressure pg.)

(b)Answer the same questions if the gas is nitrogen which is diatomic and whose
molar specific heat is %R. <a-38>

[E-2] Temperature change due to compression of a gas

Suppose that the gas in the preceding problem is initially at an absolute

temperature T,

(a) If the gas is argon, what is its final absolute temperature after its
compression if this is done isothermally? If this is done adiabatically?
(Express your answers in terms of the initial absolute temperature T,.)

(b) Answer the same questions is the gas is nitrogen. <h-14> <a-25>

[E-3] Temperature-volume relation for an adiabatic ideal gas

An ideal gas is slowly compressed while it is thermally insulated from its
surroundings. The absolute temperature T of the gas then varies with its volume
V in such a fashion that TV = constant. What is the value of the constant b in

this relation? Express your result in terms of the constant y characterizing the
gas. <h-0> <a-42>

F. Heat transfer and thermal conductivity

Up to now we have been mostly concerned with equilibrium situations. By
contrast, we now consider a simple non-equilibrium situation where heat is
transferred from one system to another.

15
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To be specific, Fig. F-1 illustrates two systems connected by a rod made of
some metal or some other substance. If the absolute temperatures T and T' of
these systems are the same, everything is in equilibrium and no energy will be
transferred from one system to the other. But if the temperatures of these
systems are different, energy in the form of heat will be transferred from one
system to the other (until the systems ultimately reach equilibrium and attain a
common temperature). What can one say about the rate of heat transfer 6 G.e.,
the amount of heat transferred per second) between the two systems when their
temperatures are T and T'?

The rate of heat-transfer (or “heat flow”) 6 is zero if the temperature
difference AT = T'~ T = 0. It is non-zero if AT # O and is larger if this
temperature difference is larger. The heat flow thus depends on the temperature
difference in the manner qualitatively indicated in Fig. C-2. If the temperature
difference is not too large, this graph is nearly straight so that one can write

0 = (constant) AT. (F-1)

Here the constant depends on the nature of the connecting rod. If the cross-
sectional area A of the rod is larger, one would expect the heat flow to be
proportionately larger. But if the length L of the rod is larger, one would expect
the heat flow to be proportionately smaller. Hence (F-1) can be written as

A
Q=xaT (F-2)
where the constant x (denoted by the Greek letter kappa) depends only on the
nature of the substance of which the rod is made and is called the thermal
conductivity of this substance. Fig. F-3 lists the measured thermal conductivities
of a few common substances.

Problems

[F-1] Heat flow through a glass window

A window, 90 cm high and 50 cm wide, is made of 0.30 cm thick glass
having a thermal conductivity of 0.80 W/m-K. Suppose that this window
separates the inside of a room, at a temperature of 20°C, from the outside air
having a temperature of —10°C. How much heat per second flows through this
window from the room to the outside surroundings?

The following illustrates the solution of this problem.

Sample solution
Heat flow is
A
Q=x 2 AT (1)
where AT =20°C - (-10°C) =30°C =30 K.
By ()

0.90 m x 0.50m
Q=080 WmK) ( 3.0x 103 m

| & =3000 watt. | )

) (30K)

7. Heat capacity and heat transfer

( ™

Cross-section
area A

- /

Fig. F-1. A rod connecting two systems at
different temperatures.

r X )
Q

AT=T'-T

N /
Fig. I/*‘\-Z. Graph indicating how the heat

flow Q from a higher temperature T' to a
lower temperature T depends on the

temperature difference AT.

4 ™
Substance X

(W/mK)

Aluminum 205
Copper 385
Silver 406
Brass 109
Steel 50
Glass 0.8
Concrete 0.8
Styrofoam 0.01

N

Fig. F-3. Thermal conductivities of

some substances (at room temperature).
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[F-2] Measuring the thermal conductivity of a material

To measure the thermal conductivity of a material, an experimenter
constructs a box whose walls, made of this material, are 3.2 cm thick and have a
total area of 2.1 m2. The experimenter finds that 150 watt of power must be
supplied to an electric heater inside the box in order to maintain the temperature
inside the box 55°C above the temperature outside the box. What then is the
thermal conductivity of this material? <a-I>

[F-3] Heat flow resulting from window in a door

A door, 2.20 m high and 0.80 m wide, is made of 3.8 cm thick wood which
has a thermal conductivity of 0.050 W/m-K. A small window, 0.50 m high and
0.40 m wide, is then cut into the door. This window is made of 0.40 cm thick
glass having a thermal conductivity of 0.80 W/m-K. The door separates the
inside of a house, at a temperature of 25°C, from the outside winter air at —-10°C.

(a) How much heat per second would flow through the original door (without
the window) from the inside of the house to the outside surroundings?

(b) With the window in the door, how much heat per second flows through this
window? How much heat flows through the remaining wooden part of the
door?

(c) How much larger is the heat flow through the windowed door than the heat
flow that would have occurred through the original window-less door?
<a-4>

G. Summary
Definitions
Heat capacity:
Cy= (%1‘2 (where y indicates quantity which is kept constant).
y

{Describes relation between absorbed heat d'Q and temperature change dT.}
If Cis constant, C=Q/AT or Q=C AT (for any temperature change AT).

Specific heats:

Per mole: c=Clv (where v = number of moles of substance).
Per unit mass: ¢=C/M (where M = mass of substance).
Important knowledge

Heat capacity at constant volume:
Cy= (g—%) (since d'Q = dE when now work is done).
v

Molar specific heat of a monatomic ideal gas:
cy=3R=125J/(Kmole) (since molar energy B=2RT),

Entropy related to heat capacity:

Tg

Sp-Sa= | S —cin(TaTy) GFC is constant).

T
Ta

17
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Adiabatic process of an ideal gas:
pVY=constant [where Y = (cy + R)/cy]

Heat flow and thermal conductivity:

6 =X % AT (where x = thermal conductivity of substance).

New abilities
You should now be able to do the following:

(1) Use the heat capacity to relate a system's temperature change and absorbed
heat. Also relate such a heat capacity to specific heats per mole or per unit
mass.

(2) Use the thermal interaction between systems to determine temperatures
from known heat capacities, or to determine the heat capacity of a system
from other known heat capacities and known temperatures.

(3) Use knowledge of a system’s heat capacity to determine its entropy change
between any two temperatures.

(4) Use the thermal conductivity of a substance to related heat flow to
temperature differences.

Problems

[G-1] Relation between cy and cp of an ideal gas

Suppose that a small amount of heat d'Q is added to one mole of an ideal

gas while its pressure p is maintained constant.

(a) How is this absorbed heat related to the change dE of the internal energy of
this gas and to the change dV of the volume of the gas? <h-9>

(b) How is the energy change dE related to the change dT of the absolute
temperature change of the gas? Express your answer in terms of the molar
specific heat cy of the gas at constant volume. <h-11>

(c) How is the volume change dV related to the change dT of the absolute
temperature of the gas? <h-4>

(d) How is the molar specific heat cp of the gas, at constant pressure, related to
d'Q and dT? By using the answers to the preceding parts of this problem,
express this specific heat in terms of the molar specific heat cy of the gas at
constant volume. <a-26>

[G-2] Molar specific heat cp of some ideal gases

Exploit the result of the preceding problem to answer the following
questions about the molar specific heat cp of some ideal gases at constant
pressure. Express your answers in terms of the gas constant R,

(a) What is the molar specific heat cp of a monatomic ideal gas?
(b) The molar specific heat cy, at constant volume, of a diatomic gas like

nitrogen (N3) is% R. What is the molar specific heat cj, of such a diatomic
ideal gas maintained at constant pressure? <a-20>

[G-3] Heat capacity C, and enthalpy change

The enthalpy H of a system, maintained at a constant pressure p, is defined
to be equal to H = E + pV where E is the system’s internal energy and V is its
volume. Show that the heat capacity Cp of this system at constant pressure is
equal to (dH/dT)p.
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[G-4] Final temperature of tea poured into a cup

A copper cup, having a mass of 120 gram, is at a temperature of 20.0°C and
insulated from its surroundings by a wool sleeve. A quarter liter of tea, having a
mass of 250 gram, has a temperature of 80.0°C when it is poured into this cup.
What is the final temperature of the tea in the cup? <a-35>

[G-5] Temperature change produced by impact of a bullet

A lead bullet, of mass My, travels with a speed v when it hits and partly
penetrates an aluminum block. This block, of mass M,, is attached to a brick
wall so that it remains at rest. Initially, both the bullet and the aluminum block
are at a temperature of 23°C,

(a) What is the increase of the internal energy of the bullet and aluminum block
as a result of the bullet’s impact with the block?

(b) What is the increase of the absolute temperature of the block and bullet as a
result of the impact? (Assume that negligible heat flows from the block to
the wall or its other surroundings.) Express your result in terms of the bullet
speed v, the masses of the bullet and block, and the specific heats per unit
mass cp, and c, of lead and aluminum.

(c) The specific heat of lead is 130 J/kg-K and that of aluminum is 910 J/kg-K.
Suppose that the mass of the bullet is 0.030 kg and that of the aluminum
block is 0.500 kg. What then is the final temperature (in degrees C) of the

block and bullet if the bullet strikes the block with a speed of 800. m/s?
<a-15>

[G-6] Entropy change in thermal interaction between identical systems

Problem D-4 considered the thermal interaction between two identical
systems, each having a constant heat capacity C. These systems, which had
initially absolute temperatures T; and T,, finally reached a common final
absolute temperature Ty.

(a) The change of the total entropy of both systems, between the initial situation
and the final situation, was already found in Problem D-4. Express this
change of the entropy in terms of heat capacity C, the final temperature T¥,
and the initial temperature difference AT =T, - T;.

(b) Is the final total entropy of the systems larger than or smaller than their

initial total entropy? Under what special conditions is the final total entropy
the same the initial total entropy? <a-22>

[G-71t Entropy change in thermal interaction with a heat reservoir

An object, which has a constant heat capacity C, is initially at an absolute
temperature T, The object is now brought into thermal contact with a “heat
reservoir” at an absolute temperature Tg. (A heat reservoir is a system of such
large heat capacity that its temperature remains essentially unchanged
irrespective of how much heat it absorbs or gives off.) After equilibrium is
reached, the object then attains the same temperature Ty as that of the heat
IEServoir.

(a) What is the heat absorbed by the object as a resuit of its thermal interaction
with the heat reservoir?

(b) What is the entropy change of the object as a result of this thermal
interaction?

(c) What is the entropy change of the heat reservoir as a result of this thermal
interaction?

(d) What is the total entropy change AS* of the entire system (object and heat
reservoir) as a result of the thermal interaction? Express your answer in
terms of the heat capacity C and the ratio y = Tp/T of the object’s final and
initial absolute temperatures.

(e) Draw a graph showing how the total entropy change AS* varies with the
temperature ratio y.

19
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(f) For what value of y is the total entropy change minimum? What is the
corresponding value of the total entropy change? <h-8>

(g) Under what conditions is the total entropy change of the entire system zero?
If it is not zero, is it always positive or always negative? <g-27>

[G-811 Entropy changes for various ways of adding heat

An object has a constant heat capacity C and is initially at an absolute
temperature of 300 K. This object can be brought into thermal contact with one
or more heat reservoirs

(a) What is the total entropy change of the universe if the object is brought into
thermal contact with a heat reservoir at a temperature of 400K and allowed
to come to equilibrium with it? (Refer to the results of the preceding
problem.)

(b) What is the total entropy change of the universe if the object is brought into
thermal contact with a heat reservoir at a temperature of 350 K and allowed
to come to equilibrium with it?

(c) What is the total entropy change of the universe if the object is afterwards
brought into thermal contact with a heat reservoir at a temperature of 400K
and allowed to come to equilibrium with it?

(d) The two successive processes specified in parts b and ¢ also bring the object
from its initial temperature of 300 K to its final temperature of 400 K. What
is the total entropy change of the universe as a result of these two successive
processes? Is this entropy change larger than or smaller than the entropy
change produced in part a where the object was brought to its final
temperature in a single step? <a-32>

[G-9] Phase transformations
The same substance can exist in several different forms

7. Heat capacity and heat transfer

or “phases” (e.g., in the form of a solid, a liquid, or a gas). Substance | Melting | Heat of Heat of
The substance changes from one form to another at some point fusion point | vaporization
definite temperature and remains at this temperature while
. . K /k K Ik

changing its form. But some heat (called “heat of &) (clkg) & lkg)
transformation” or “latent heat”) must be added to the Hydrogen 14.0 58.6 20.3 452
s.ubs'tance to mt?lt .it s0 as to change it from the solid to the Oxygen 54.8 13.8 902 213
llqulq form. Similarly, some latent h.eat must be. aqded to Mercury 234 113 630 296
vaporize the substance so as to change it from the liquid form W - 133 - 2256
to the gaseous form (or so as to change if from the solid to ater
the gaseous form)_ Lead 601 24.7 2013 858

As indicated in Fig. G-1, water changes from its solid Silver 1235 105 2485 2336
form (called “ice”) to its liquid form at a temperature of 0°C., \_ J

The heat of transformation required to effect this change is
3.33 x 10° J/kg (i.e., 3.33 x 107 joule of heat must be added
to melt every kilogram of ice).

Suppose that a 500-watt electric heater'is used to melt
ice. How much ice would it melt after 5.0 minutes? <a-11>

[G-10] Cooling tea with ice

Boiling

Fig. G-1. Heats of transformation of some common substances at
atmospheric pressure. (The melting point is the temperature at
which the substance changes from solid to liquid. The boiling point
is the temperature at which is changes from liquid to gas.)

What mass of ice, originally taken from a freezer at a temperature of —15°C,
must be added to 0.25 kg of tea, originaily at a temperature of 80°C, so as to end
up with cold tea at a temperature of 10°C? (The specific heat of tea is the same
as that of water, i.e., 4190 J/kg K. The specific heat of ice is 2000 J/kg K and its
latent heat of melting is 3.33 x 103 J/kg.)

The following illustrates the solution of this problem.
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Sample solution
Situation:
Initially: Tea: Mass = 0.25 kg. 1 =80°C.
Ice: Mass=M. t=-15°C.
Finally: Tea (and melted ice) at 10°C.
Goal: M=?

Apply energy law to tea + ice, between initial and final states:

(AE)tea + (AE)ice = 0. (1)
Tea.

Initial state: Tea at 80°C.
U ¢=4190JkgK.

AE = (0.25 kg) (4190 J/kg K) [(10°C - 90°C) (K/*C)]

AE =-7.33x 104 J. )
Final state: Tea at 10°C.

Ice.

Initial state: Ice at ~15°C.
!  Warming ice. ¢=2000J/kgK

AE =M (2000 J/kg K) {[0°C - (-15°C)] (K/°C)}

AE =3.00x 10 M (J/kg) (3)
Intermediate state #1: Ice at 0°C.
U Melting ice at 0°C. Latent heat = 3.33 x 105 Jkg.

AE =M (3.33 x 10° J/kg)

AE = (3.33 x 10°) M (J/kg). )
Intermediate state #2: Melted ice (i.e., water) at 0°C.
U Warming resulting water. ¢ =4190 J/kg K.

AE =M (4190 J/kg K) [(10°C - 0°C) (K/°O)]

AE = 4.19 x 104 M (J/kg). (5)
Final state: Melted ice (i.e., water) at 10°C.

Put results (2) through (5) into (1):

[-7.33 x 104 7] + [3.00 x 104 + 3.33 X 105 + 4.19 x 1041 M (J/kg) = 0

—-7.33x 104 T+ 40.5x 104 M (J/kg) =0
733 x 104 kg = 40.5 x 104 M

M=0.18kg )

[G-11] Water frozen by an ice cube

An ice cube, having a mass of 75 gram, is taken from a freezer at
temperature of -15°C and is dropped into a glass of water at a temperature of
0°C. How many grams of that water will freeze as a result? (Data about the
properties of ice and water are given in Figs. B-1 and G-1.) <a-24>

Analysis of problem

Construction of solution
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[G-12] Temperature reached by water cooled by an ice cube

A copper can, having a mass of 0.750 kg and filled with 0.200 kg of water
at a temperature of 20.0°C, is thermally well insulated from its environment. A
person now puts into the water 0.030 kg of ice at a temperature of 0.0°C.
(a) What will be the final temperature of the water after the ice has melted and
final equilibrium has been reached?
(b) How much work must afterwards be done to rotate a stirring rod, immersed

in the water, to bring the copper can and its contents back to the temperature
of 20.0°C? (The heat capacity of the stirring rod is negligible.) <a-28>

[G-13]t Cooling soda with ice

A person pours 100 gram of soda (which is essentially water) into a
thermally insulated copper mug having a mass of 275 gram. The soda and mug
are initially at a temperature of 20°C. The person then drops into the soda
50 grams of ice taken from a freezer at a temperature of ~15°C,

(a) What is the final temperature reached by the soda (before heat losses to the
surrounding room become significant)?

(b) Has all the ice then melted? If not, how much ice remains in the mug?
<h-10> <a-29>

[G-14] Effect of temperature on energy of air in a room

Air consists of the diatomic molecules nitrogen and oxygen. The average
energy of such a diatomic molecule, at an absolute temperature T, is (5/2)kT.

(a) Suppose that the temperature of the air in a room changes from 17°C to
37°C while the pressure of the air remains at atmospheric pressure
(1.01 x 103 N/m?2). By what amount (in joules) does the average energy of
an air molecule then change? '

(b) Does the total energy of the air molecules in the room increase, decrease, or
remain the same? Why?

(c) Does the number of air molecules in the room increase, decrease, or remain
the same? <a-44>

[G-15] Different gas processes between the same temperatures

The specific heat of one mole of an ideal diatomic gas is %R (where R is the

gas constant). What is the work done on this gas, the heat absorbed by it, and
the change of its internal energy in each of the following processes if each raises
the absolute temperature of the gas from T to T'?

(a) A process in which the volume of the gas remains constant?

(b) A process in which the pressure of the gas remains constant?
(c) An adiabatic process? <a-40>

[G-16] Temperatures in a cyclic gas process
Fig. G-2 illustrates a cyclic quasi-static process ABCA of a monatomic ideal o ™
gas. p
(a) The volume of the gas remains constant during the process AB. Is the B
absolute temperature Ty of the gas in the state B larger than, smaller than, or
equal to its absolute temperature in the state A? Why? adiabatic
(b) The gas is thermally insulated during the process BC. Is the absolute
temperature T of the gas in the state C larger than, smaller than, or equal to

its absolute temperature in the state B? Why? A ¢
(c) The pressure of the gas remains constant during the process CA. Is the
absolute temperature T, of the gas in the state A larger than, smaller than, or v
equal to its absolute temperature in the state C? Why? - J
(d) What is the temperature Tg? Express your answer in terms of T4 and the Fig. G-2. Cyclic process of a monatomic
volumes V, and V¢ of the gas in the states A and C. ideal gas.

(e) What is the temperature Tc? Express your answer in terms of the same
quantities. <h-12> <a-46>
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[G-17] Adiabatic expansion of oxygen gas
Oxygen gas, which is diatomic, has a molar specific heat equal toi— R. Ata

temperature of 35°C, the volume occupied by 8.00 X 10-2 moles of this gas is

1.00x 103 m3. The gas is now expanded adiabatically until it reaches a

temperature of 12°C.

(a) What is the original pressure of the gas?

(b) During the expansion of the gas, what is the work done on the gas, what is
the heat absorbed by the gas, and what is the change of internal energy of
the gas?

(c) What are the final volume and pressure of the gas? <a-37>

[G-18] Expansion of helium gas
One mole of helium gas, initially at an absolute temperature T,, has a

volume V4. As illustrated by the graph in Fig. G-§, the gas is now expanded, at

constant pressure, until its volume is 2V,. The gas is then further adiabatically
expanded until its temperature reaches the same value T, as it had originally.

(a) What is the work done on the gas, and the heat absorbed by the gas, during

this entire process?
(b) What is the final volume of the gas? <a-43>

[G-19] Cyclic process of a monatomic gas
Fig. G-3 shows how the pressure p of one mole of a monatomic ideal gas
varies with its volume V during the cyclic process ABCA. Express the answers
to the following questions in terms of the gas constant R and the absolute
temperatures T,, Tg, and T¢ of the gas in the states A, B, and C.
(a) What is the work done on the gas, the heat absorbed by it, and the change of
its internal energy in the process AB during which the volume of the gas
remains constant?

(b) What is the work done on the gas, the heat absorbed by it, and the change of
its internal energy in the adiabatic process BC?

(c) What is the work done on the gas, the heat absorbed by it, and the change of
its internal energy in the process CA during which the pressure of the gas
remains constant?

(d) Suppose that the temperatures are T, =300. K, Ty =650. K, and
Tc =450. K. What then are the numerical answers to each of the questions
posed in parts a, b, and ¢?

(¢) What is the numerical value of the total work done on the gas during the
entire cyclic process ABCA? What is the numerical value of the total heat
absorbed by the gas during this entire process? <a-48>

[G-20] Pressures and volumes in the preceding process
Suppose that the preceding mole of monatomic gas starts in state A at
atmospheric pressure (1.013 x 105 N/m?2).
(a) What then is the volume of the gas in this state A?
(b) What are the volume and pressure of the gas in the state B?
(c) What are the volume and pressure of the gas in the state C? <a-41>
[G-21] Size dependence of heat conduction

To examine in greater detail how the heat flow through a rod depends on its
size, consider first a small block of length L, and cross-sectional area Ay, The

heat bo flowing through this block is proportional to the temperature difference
(AT)q across its ends so that

Qo =B (AT), (10

where B is some constant characterizing the small block.
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Fig. G-3. Cyclic process of a monatomic

gas.
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As indicated in Fig. G-4, the rod can be imagined to consist of many
identical such small blocks placed end-to-end and side-by-side.

(a) If the length of the rod is L, there are L/Ly such blocks placed end-to-end.
What is the temperature difference (AT)q across a single such block if the
temperature difference across the entire length of the rod is AT?

(b) If the cross-sectional area of the rod is A, there are A/A, such blocks placed
side-by-side. What is the heat flow 60 through a single such block if the
heat flow through all the side-by-side blocks is 6?

(c) Use the preceding relation to express the relation (1) in terms of the
quantities characterizing the entire rod (i.e., the quantities Q, AT, L, and A).
According to this result, how does the heat ﬂow@ through the rod depend
on its length L? How does it depend on its cross-sectional area A?:

(d) Are the preceding results consistent with the relation (G-2)? Suppose that
the rod consists of a substance having a thermal conductivity x. Express
this thermal conductivity in terms of the quantities B, Lo, and A,
characterizing a small block of this substance. <g-14>

[G-22] Power needed to maintain an oven temperature

The electric oven of a kitchen range is insulated with a 3.5 cm thick layer of
fiberglass and has a total wall area of 1.30 m2. The thermal conductivity of the
fiberglass is 0.040 W/m-K. How much electric power must be supplied to the

heating element in this oven so as to maintain its inside temperature at 220°C
when the outside room temperature is 20°C? <a-36>

[G-23] Heat conduction through two connected bars

Two bars, of the same cross-sectional area, are joined together end-to-end as
illustrated in Fig. G-S. The first bar has a length L, and is made of a material
having a thermal conductivity k;. The second bar has a length L, and is made of
a material having a thermal conductivity x,. The free end of the first bar is in
contact with ice and the free end of the second bar is in contact with warm
water. (The bars are, however, wrapped with thermally insulating material so
that negligible heat flows into them through their sides.)

In a steady state, the temperature at any point of the bars remains
unchanged. No net heat is then absorbed by any small region within in the bars,
i.e., the heat entering any such region from one side must be equal to the heat
leaving it from the other side. In particular, this means that the heat flowing
through the first bar must then be equal to the heat flowing through the second
bar (since the temperature near their junction would otherwise change).

In such a steady state, what is the ratio (AT),/(AT); of the temperature
difference (AT), existing across the ends of the second bar compared to the
temperature difference (AT); existing across the ends of the first bar? Express
your answer in terms of the lengths of the two bars and in terms of their thermal
conductivities. <g-9>

[G-24] Heat flow through an insulated brick wall

The wall of a house is 10 cm thick and consists of bricks having a thermal
conductivity of 0.60 W/m-K. The inside of the house is maintained at a
temperature of 25°C and the outside air temperature is -15°C.

(a) How much heat per second leaves the inside of the house as a result of
conduction through every square meter of the wall?

(b) Suppose that the inside surface of the brick wall is covered with a 2 cm
thick layer of rock wool which has a thermal conductivity of 0.04 W/m-K.
If the inside of the house is again maintained at a temperature of 25°C and
the outside air temperature is again — 15°C, what is the temperature at the
boundary where the rock wool is joined to the brick wall? <h-1>

7. Heat capacity and heat transfer
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Fig. G-4. A rod consisting of many

identical small blocks.

Fig. G-5. Heat conduction through two

connected bars.



7. Heat capacity and heat transfer

(c) Under these conditions, how much heat per second leaves the inside of the
house as a result of conduction through every square meter of the wall?
<a-16>

[G-251f Time needed to form an ice layer on a lake

A sheet of ice forms at the top of a lake when the air temperature at the
surface of the lake is lower than the 0°C temperature at which water freezes.
The temperature of the water below the ice sheet remains near 0°C. But when a
layer of water freezes at the bottom of the ice sheet, the heat liberated in the
process flows through the ice sheet to the cold air above it.

Suppose that the temperature difference between the bottom and top of the
ice sheet is AT. The heat given off when water is transformed into ice is L =
3.33 x 10° J/kg, the density of ice is p = 0.92 x 10° kg/m3, and the thermal
conductivity of ice is x = 1.6 W/m K.

(a) Derive a relation showing how the thickness x of the ice sheet depends on
the elapsed time t since the ice started to form. (Besides x and t, this
relation should involve the constants AT, L, p, and k.) <h-3>

(b) Suppose that a time T is required to form a 0.10 m thick sheet of ice. How
long a time would then be required to form a 0.20 m thick sheet of ice?

(c) Suppose that the temperature at the top of the lake is ~10°C. How many
hours would then be required to form a sheet of ice 0.10 m thick? <a-7>
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