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As we have seen, the absolute temperature of a system determines whether
the system will be in thermal equilibrium with other systems. The absolute

" temperature can also profoundly affect the properties of a system. Accordingly,

the present chapter discusses ideal gases, systems that are especially simple yet
quite important. In particular, we shall examine how the properties of an ideal
gas depends on its absolute temperature. This examination will also lead as to
practical methods of measuring the absolute temperature of any system.

A. Kinetic energy and absolute temperature

The absolute temperature T of any system specifies how rapidly the
system’s entropy increases with its energy. Indeed, according to its definition
(4F-3), the basic temperature B of a system is related to its basic entropy InQ so
that.

_InQ

Equivalently, since § = 1/(kT), the absolute temperature T is related to the
entropy S =k InQ2 so that

(A-2)

KA
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Monatomic gas

Entropy of the gas. Consider a monatomic ideal gas (such as helium or
argon) in which every molecule consists of a single atom. The internal energy E
of the gas is then merely equal to the total kinetic energy K of all the molecules.
Furthermore, this system is sufficiently simple that one can readily calculate
how the number Q of basic states available to the gas depends on its kinetic
energy K. This calculation was already carried out in Chapter 4 and led to the
result (4E-3) that

Q=cK3N2 (A-3)

where ¢ is some constant of proportionality. The entropy of this monatomic gas
depends thus on its energy E = K so that
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s=k1nQ=k1nc+k(37N InE. (A-4)

Absolute temperature of the gas. According to the general relation (A-2),
the absolute temperature T of this gas is related to its energy E so that

1_dS_ 3N} L
T_dE_0+k(2 )E

since d(InE)/dE = 1/E. Hence the energy E of the gas (which is solely due to its
kinetic energy K) is equal to

E= K=%N KT. (A-5)

The average kinetic energy K, of any single molecule of the gas is, therefore,
equal to

[ SBIVH]

Ki=p= KT, (A-6)

The total internal energy of such a monatomic gas (or the average kinetic energy
of any one of its molecules) is thus simply proportional to the absolute
temperature of the gas. (For example, if the absolute temperature is doubled, the
internal energy of the gas is also doubled.)

Polyatomic gas

Polyatomic molecules. Consider now a polyatomic gas where every
molecule consists of two or more atoms. (For example, the gas might be
nitrogen where every N, molecule consists of two nitrogen atoms.) If the gas is
ideal, the potential energy of interaction among different molecules is again
negligible compared to the kinetic energy associated with the center-of-mass
motions of all the molecules., However, the energy of any single molecule
includes now not only the kinetic energy due to the motion its center of mass,
but also internal molecular energy. (This internal molecular energy includes
kinetic energy due to the rotation of the atoms about the center of mass of the
molecule. It also includes kinetic and potential energy due to the atoms
vibrating relative to each other within the molecule.)

Energy of a polyatomic gas. The total energy E of such an ideal
polyatomic gas is thus equal to

E=K+Emnol (A-7)

where K is the kinetic energy of the whole gas due to the center-of-mass motions
of all the molecules and Ep,q] is the energy of the whole gas due to internal

motions within the molecules. The entropy S of the gas is similarly equal to
S =Skin + Smol , (A-8)

where Skip is the entropy due to all the possible center-of-mass velocities of the
molecules and Sy is the entropy due to all the possible basic states of motion

Appendix § reviews the properties of
logarithms, including the result that
d(Inx)/dx = 1/x.
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internal to the molecules. The situation is thus similar to that discussed in the
preceding chapter, namely one where the total energy E is shared among two
systems (the system consisting of the center-of-mass motions and the system
consisting of the internal molecular motions). Correspondingly, the most
probable energies of these systems are such that these systems have a common
absolute temperature T. The most probable total kinetic energy K of center-of-
mass motion is thus still related to the absolute temperature in the way specified
by (A-5), i.e.,

K=

Njw

NkT. (A-9)

Thus the average center-of-mass kinetic energy of any single molecule is

K

K1= ﬁ

%k’l‘. (A-10)

However, the total internal energy E of the gas is now not equal to its total
kinetic energy K since the gas has also some additional energy due to internal
motions within the molecules.

Energy is independent of volume

Note that the energy E of an ideal gas depends on its absolute temperature
T, but does not depend on its volume.

If a gas is ideal, E is independent of volume. (A-11)

Reasons for independence. If the volume of a gas is changed, the average
distance between the gas molecules changes correspondingly. Hence the
potential energy U of mutual interaction among molecules also.changes. But, if
the gas is ideal, this potential energy is negligibly small compared to the kinetic
energies of the molecules. Any change of this potential energy has thus no
effect on the energy E of the gas.

Furthermore, the internal motion within any polyatomic molecule is
unaffected by the distances between different molecules in the gas. Hence the
energy Emo} of internal molecular motions also does not depend on the volume
of the gas.

The preceding comments make it clear why the energy of an ideal gas does
not depend on its volume. However, they also indicate that the energy of a gas
would depend on its volume if the gas is not ideal (i.e., if the average distance
between molecules is small enough that their potential energy of interaction is
appreciable).

Problems

[A-1] Temperature variation of molecular speeds

The molecules of an ideal gas move about in random directions. Suppose
that the absolute temperature of the gas is doubled. What is the resulting effect
on the average speed of each-of its molecules? <a-12>
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1

[A-2] Gas consisting of two kinds of molecules

A box contains an ideal gas consisting of N; molecules of one kind and of
N, molecules of another kind. The mass m; of each molecule of the first kind is
larger than the mass m, of each molecule of the second kind.

(a) When the gas is in equilibrium, is the absolute temperature of the system
consisting of all the molecules of the first kind the same as the absolute
temperature of the system consisting of all the molecules of the second
kind?

(b) Is the average kinetic energy (of center-of-mass motion) of a molecule of
the first kind larger than, smaller than, or equal to the average kinetic energy
of a molecule of the second kind? <h-4>

(c) Is the average speed of a molecule of the first kind larger than, smaller than,
or equal to the average speed of a molecule of the second kind?

(d) What is the ratio v;/v, of the average speed v, of a molecule of the first kind
compared to the average speed v, of a molecule of the second kind?

(e) Suppose that the molecules of the first kind are oxygen molecules (each of
which consists of two oxygen atoms) and that the molecules of the second
kind are helium molecules (each of which consists of a single helium atom).
The mass m,; of an oxygen molecule is known to be 8 times larger than the
mass m, of a helium molecule. What then is the numerical value of the
ratio v{/v,? <a-7>

[A-3] Free expansion of a gas
A box, with rigid walls and thermally insulated from its environment, is

divided into two parts by a partition. As indicated in Fig. A-1a, the left half of
the container is filled with a gas while the right half is empty. A valve is now
opened in the partition. No work is thereby done on the gas which then expands
freely until it reaches the equilibrium situation where it fills the entire box (as
indicated in Fig. A-1b).

(a) Is the final internal energy of the gas larger than, smaller than, or the same
as its initial internal energy when it was in the left half of the container?

(b) If the gas is ideal, is its final absolute temperature larger than, smaller than,
or the same as its initial absolute temperature? Why? <h-7> RS O N

(c) If the number n of gas molecules per unit volume is sufficiently large, the
molecules are sufficiently close together that the potential energy U due to - J
their interactions is appreciable. Fig. A-1. Free expansion of a gas

(1) As the gas expands so as to fill the entire box, does this potentia] ~throughout an entire box.
energy then change? Why?
(2) Does the total kinetic energy K of the gas molecules then change?
Why?
(3) Does the temperature of the gas then change? [The equation (A-9),
relating the kinetic energy K to the absolute temperature T of the gas, is
true even if the potential energy U is appreciable.] <a-3>

B. Pressure, temperature, and volume

What is the pressure exerted by an ideal gas? And how is it related to the
absolute temperature of the gas?

Pressure produced by molecular impacts

The pressure exerted on the surface of any object immersed in the gas (or on
any wall of the container enclosing the gas) is due to the continual collisions of

PP AU D eim et et I
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the gas molecules with this surface. These collisions produce a slightly
fluctuating force on this surface. The pressure p of the gas is, by definition,
equal to the magnitude of this force exerted per unit area.

Force and molecular momentum change. To calculate the pressure
produced by these molecular collisions, consider an ideal gas in the box of
Fig. B-1a. The colliding molecules exert on the right wall of this box a net force
to the right (i.e., along the indicated x-direction). The magnitude F of this force
is the same as the magnitude of the force exerted on the molecules by the wall
~— and this force is equal to the rate of change of momentum of the molecules.
Thus

F = (magnitude of momentum change in one collision) (B-1)

X (number of wall collisions per unit time)

Momentum change in a single collision. To make a simplified calculation
of the force F, assume that all the gas molecules are moving with the same speed
v in random directions. Fig. B-1b shows such a molecule which is near the right
wall and moves toward it with a speed v to the right. After striking the wall, the
molecule then rebounds. from it with.a speed v to the left. If the molecule has.a
mass m, the magnitude of its momentum change during a collision with the wall
is then mv — (—mv) so that

magnitude of momentum change in one collision = 2mv. B-2)

Number of collisions per unit time. During a small time dt, a molecule
with speed v travels a distance v dt. Consider any molecule which moves to the
right with this speed, as indicated in Fig. B-2. If this molecule is within a
distance v dt of the right wall, it will strike the wall during the time dt. (But if it
is farther from the wall than this distance, it will not strike the wall.) The
molecules which strike the wall, of area A, during the time dt are thus all those
molecules which move to the right and are contained in a cylinder of length v dt
and area A.

Volume of cylinder in Fig. B-2 = A v dt.

Suppose that the gas contains n molecules per unit volume. On the average,
one third of these (i.e., n/3 per unit volume) then move parallel to the
x-direction, one third- move parallel to the y-direction, and one third move
parallel to the z-direction. Half of those moving parallel to the x-direction (i.e.,
1n/6 molecules per unit volume) move toward the right wall (while the remaining
half move away from it). Hence

number of molecules moving to the right

within the cylinder of Fig. B-2 = % (Avdp

Dividing this by the time dt, we get

number of wall collisions per unit time = _11__16\_‘1 . B-3)

These statements are based on a
knowledge of mechanics, i.e., on the relation
between mutual forces (Newton’s third law
of otior%and on the momentum law

dP/dt =F gy.

q—.v ,

o J

Fig. B-1. (a) A gas inside a box. (b) A gas
molecule striking the right wall of the box
and rebounding from it.

4 number of molecules, per unit volume,
which move to right = /6

¢-volume of cylinder = A v dt

J

Fig. B-2, Cylinder containing the molecules
which strike the wall within a time dt.
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Calculation of pressure. The magnitude of the force in (B-1) is obtained
by multiplying (B-2) by (B-3) so that

F=(mv) (_n%) = —é"n Amv2.

The pressure p exerted by the gas molecules on the wall is then

p=%= -é-n mv2, (B-4)

One can readily verify that this result makes sense. (a) If the number n of
molecules per unit volume were twice as large, the pressure would be twice as
large (since twice as many molecules would then hit the wall during any
second). (b) If the mass m of a molecule were twice as large, the pressure would
also be twice as large (since the momentum change of a molecule during any
collision would be twice as large. (c) If the speed v of the molecules were twice
as large, the pressure would be four times as large (since the momentum change

of a molecule during any collision would be twice as large and the number of
such collisions during any second would also be twice as large).

Relation among the properties of an ideal gas
Pressure and absolute temperature. The quantity mv2 in (B-4) is related

L 1 . .
to the kinetic energy K; =~ mv2 of a single molecule. Hence the pressure in

2
(B-4) is also equal to
2
p=3nK;. ®-5)

But we know from (A-6) and (A-9) that the kinetic energy of a molecule
(whether monatomic or polyatomic) is related to the absolute temperature T of
the gas so that '

Kl =5

3
5 KT. (B-6)

By combining these two relations, we obtain the result
(8-7)

which relates the pressure of the gas to its absolute temperature. This relation
implies that the pressure of the gas is directly proportional to its absolute
temperature. (For example, if the absolute temperature is doubled, the pressure
exerted by the gas is also doubled).

Ideal-gas law. The number n of molecules per unit volume is equal to N/V

where N is the total number N of molecules in the gas and V is the volume of the
gas. Hence (B-7) can also be expressed in the form

N
P=5 kT

More exact reasoning should take into
account the fact that not all molecules of the
gas move with the same speed. This
reasoning merely leads to the result that v2
in (B-4) should be replaced by the average
value of this quantity.
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or pV=NKkT.

This equation relates the pressure, volume, and temperature of an ideal gas and
is called the ideal-gas law.

(B-8)

Note that ideal-gas law (B-8) is the same for every ideal gas, independent of
the nature of its molecules. For example, the pressure depends on the number of
gas molecules in a container, but it does not matter whether these molecules are
helium atoms or nitrogen molecules

Implications of the ideal-gas law. The ideal-gas law (B-8) has several
obvious, but important, implications. For example,

if T is constant, pV = constant. (B-9)
(This relation is called Boyle’s law.) It implies that, if the temperature remains
constant, the pressure of an ideal gas is inversely proportional to its volume.
(For instance, if the volume of the gas is doubled, its pressure becomes half as
large.) A graph of pressure versus volume has, therefore, the shape shown in

Fig. B-3.
As another example, the ideal-gas law (B-8) implies that

if Vis constant, peT, (B-10)

if p is constant, Ve T, (B-11)
(These relations are called Charles’s law or Gay-Lussac’s law.) Thus (B-10)
asserts that, if the volume of an ideal gas is kept constant, its pressure is simply
proportional to its absolute temperature. Similarly, (B-11) asserts that, if the
pressure of an ideal gas is kept constant, its volume is simply proportional to its

absolute temperature.

Problems

[B-1] Isothermal compression of a gas

A gas, which can be considered ideal, is contained in a cylinder closed by a
piston. When the volume occupied by the gas is 150 cm3, the gas pressure at
room temperature is 1.0 X 105 N/m2 The piston is now slowly moved so as to
reduce the volume of the gas to 60 cm3 while maintaining the gas at room
temperature. What then is the final pressure of the gas? <a-14>

[B-2] Comparison of absolute temperatures

A glass bulb contains a small amount of argon gas. When the bulb is
immersed in water containing melting ice, the measured pressure of the gas
inside the bulb is 3.97 x 10* N/m2. When the bulb is immersed in boiling water,
the measured pressure of the gas inside the bulb is 5.42 x 104 N/m2. What is the
ratio Tp/Ty of the absolute temperature Ty, of the boiling water compared to the
absolute temperature Tp, of the water containing melting ice? <a-I>

[B-3] Temperature dependence of quantities in an ideal gas

Suppose that the absolute temperature of an ideal gas is doubled. By what
factor is each of the following quantities then multiplied?

(a) The average-kinetic-energy of amolecule?
(b) The average speed of a molecule?

i Sk S ek

In Chapter 8 this ideal-gas law will also be
obtained by a simpler and more general
method.

This law was discovered experimentally in
1662 by the British chemist and physicist
Robert Boyle (1627-1691).

4 R
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Fig. B-3. Graph showing how the pressure p
of an ideal gas varies with its volume V if
the temperature of the gas remains constant.

Jacques Charles (1746-1823) and Joseph
Gay-Lussac (1778-1850) were both French
scientists.
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(c) The number of molecules hitting a wall every second?

(d) The average change of momentum of a molecule hitting a wall?
(e) The average force exerted by the molecules on a wall?

(f) The pressure of the gas? <a-1/>

[B-4] Dependence of gas pressure on number of molecules

When a steel cylinder is filled with 1.4 grams of helium gas at room
temperature, the pressure of the gas is 1.2 X 105 N/m2.

(a) Suppose that this cylinder is filled with 2.8 grams of helium gas at room
temperature. What then is the pressure of the gas?

(b) Suppose that the cylinder is filled with 1.4 grams of oxygen gas at room
temperature. What then is the pressure of the gas? (The mass of an oxygen
molecule is 8 times as large as the mass of a helium molecule.)

(c) With how many grams of oxygen gas at room temperature must the cylinder
be filled so that the gas pressure is 1.2 x 10° N/m2? <a-10>

[B-51 Pressure of a gas mixture
A box, of volume V, contains an ideal gas at an absolute temperature T.

The gas consists of N; molecules of one kind and of N; molecules of another

kind. Each molecule of the first kind has a mass m; and each molecule of the

second kind has a mass m,. The total force exerted on a wall of the box is then
simply the sum of the forces exerted by these two kinds of molecules.

(a) What is the pressure p, exerted on a wall of the box by the molecules of the
first kind? What is the pressure p, exerted on this wall by the molecules of

~the second kind? Express your answer in terms of kT and the other
specified quantities.

(b) What is the total pressure p exerted on a wall of the box by all the
molecules? Express your answer in terms of kT and the other specified
quantities.

(c) Suppose that the numbers of molecules of each kind are the same, but that
the masses of these molecules are different. Do the molecules of one kind
then strike a wall as frequently as the molecules of the other kind? Is the

pressure exerted on this wall by the molecules of one kind then the same as
the pressure exerted by the molecules of the other kind? <a-5>

{B-6] Internal energy of a monatomic gas

A monatomic ideal gas at a pressure p has a volume V.

(a) What is the internal energy of this gas?
(b) What is the internal energy of 1.00 m3 of argon gas at the atmospheric
pressure of 1.013 x 105 N/m2? <h-I> <a-22>

C. Measurement of absolute temperature

Measurement strategy. As we have seen, an ideal gas is a sufficiently
simple system that one calculate how its absolute temperature is related to its
other measurable properties. Any such simple system can then be used to
measure the absolute temperature of any other system X, no matter how
complex. Indeed, if one lets the simple system come to thermal equilibrium
with the system X, one knows that the absolute temperatures of the two systems
must be equal. Since one can determine the absolute temperature of the simple
system, on has then also obtained information about the absolute temperature
of X.
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Gas thermometers. The ideal-gas law (B-8) provides the relation pV =
NKT. The quantity kT (or the basic temperature B = 1/kT of the gas) can then be
measured by determining the pressure p of the gas, its volume V, and the
number N of molecules in the gas. But such measurements of kT are not easy
since the number of molecules in a gas cannot readily be measured with great
accuracy.

Constant-volume gas thermometer. On the other hand, it is much easier
to measure the ratio of two absolute temperatures. For example, consider any
fixed amount of gas in a container of fixed volume (so that N and V are
constant). Then one can readily compare the absolute temperatures T and T' of
the gas in two situations by comparing the corresponding measured pressures p
and p' of the gas. For then it must be true that

pV=NKT and p'V=NKT
T

so that =2 s C-1
Tl pl ( )
i.e., the ratio of the absolute temperatures is simply equal to the ratio of the
measurable pressures; of the gas. - An ideal gas within a container of constant
volume can thus be used as a constant-volume gas thermometer to measure the

ratios of any two absolute temperatures.

Examples of gas thermometers

Fig. C-1 shows a gas contained in a glass bulb which is connected
to a flexible tube partially filled with mercury. The volume of gas in
the bulb can be kept constant if the level of the mercury in the left side
of the tube is kept fixed. The height difference h between the mercury
levels in both sides of the tube provides a direct indication of the
pressure of the gas. The apparatus in Fig. C-1 can thus be used as a
simple kind of constant-volume gas thermometer. (To make sure that
the gas is ideal, the amount of gas in the bulb must be sufficiently
small.)

Fig. C-2 shows a constant-volume gas thermometer used to
measure the absolute temperature of a liquid. Here a small bulb, filled

with gas, is immersed in the liquid. The thermometer then consists of
this bulb which is connected by a thin tube to a manometer, i.e., to

some pressure-measuring device. (For example, such a manometer
might consist of mercury in a tube like that in Fig. C, or it might be a
device where the pressure distorts a flexible metal membrane and thus
causes the deflection of a pointer.)

Standard of absolute temperature. The preceding measuring procedures
can be readily implemented, but determine only the ratio of two absolute
temperatures. Hence it is convenient to introduce a standard temperature against
which all other absolute temperatures can be compared. The standard
temperature adopted by international convention is the unique temperature
where liquid water, ice, and water vapor can coexist in equilibrium. This is
called the triple point of water.

9
4 T
vacuum
mercury
N _/
Fig. C-1. Apparatus for measuring the

pressure of a gas in a glass bulb.

4 N\
manometer

- ) Y,

Fig. C-2. A constant-volume gas

thermometer used to measure the absolute
temperature of a liquid.
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Def: | Triple point: The situation where all three forms of a

substance (liquid, solid, and gas) can coexist in mutual| (C-2)

equilibrium.

Unit of absolute temperatui‘e. The unit of absolute temperature (i.e., the
algebraic symbol associated with the standard) is called kelvin (abbreviated as
K) and is defined so that the absolute temperature Ty of water at the triple point
has the following value:

At the triple point of water, Ty =273.16 K. (C-3)

Any absolute temperature can then be expressed in terms of the unit kelvin. For
example, suppose that a constant-volume gas thermometer indicates the pressure
p when it is in thermal equilibrium with some system X, and that it indicates the
pressure py when it is in thermal equilibrium with water at its triple point. Then
(C-1) implies that

T

— P - b,
2316 K py or T=(273.16) (Pt) K.

On this temperature scale, room tempefature is about 300 K.

Celsius temperature scale. Other temperature scales are today all defined
in terms of the absolute temperature. For example, the Celsius temperature (or
centigrade temperature) O is measured in terms of a the unit degree Celsius
(abbreviated as °C) and is defined so that

8 T

= = —-273.15.

°C - K (C'4)

Stated in words, this says that
temperature (expressed in °C) = temperature (expressed in K) —273.15.

On this temperature scale (commonly used in all countries that use the metric
system) the triple point of water has a temperature of exactly 0.01 °C.
Furthermore, water freezes at a temperature very close to 0 °C and water boils
(at atmospheric pressure) at a temperature very close to 100-°C.

Fahrenheit temperature scale. The Fahrenheit temperature 0 (still used
in the United States) is measured in terms of the unit degree Fahrenheit
(abbreviated as °F). It is related to the Celsius temperature so that

8 _9 (8%

°F = 5 \oc) ~3%

(C-5)

On this temperature scale water freezes at a temperature very close to 32 °F and
water boils (at atmospheric pressure) at a temperature very close to 212-°F.

6. |deal gases and absolute temperature

The unit is named after the Scottish
physicist William Thomson who later
acquired the title of Lord Kelvin (1824-1907).
He did important work in thermodynamics,
introduced the concept of absolute
temperature, and also contributed
substantially to other fields of physics.

This particular definition was chosen so that
the absolute-temperature scale would
closely agree with previously defined
temperature scales (i.e., so that the
differance between the freezing point and
boiling point of water would be very close to
100 K).

Anders Celsius (1701-1744) was a Swedish
astronomer who introduced this temperature
scale in 1742.

Gabriel Fahrenheit (1686-1744) was a
German-Dutch physicist who introduced this
temperature scale and devised the first
thermometers containing mercury in a glass
tubs.
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Problems

[C-1] Temperature measurements with a gas thermometer

When the bulb of a constant-volume gas thermometer, like that illustrated in
Fig. C-2, is in thermal equilibrium with water at the triple point, the measured
pressure of the gas is 4.82 x 104 N/m2. When the bulb is immersed in molten
lead, the measured pressure is 1.06 x 10° N/m2. When it is immersed in liquid
nitrogen, the measured pressure is 1.36 X 104 N/m2.

(a) What is the absolute temperature of the molten lead? What is its Celsius
temperature?

(b) What is the absolute temperature of the liquid nitrogen? What is its Celsius
temperature? <a-8>

[C-2] Absolute temperature of the human body
The Celsius temperature of a normal human body is 37 °C. What is the

absolute temperature of a human body? <a-18>

[C-3] Lowering a gas pressure by cooling

A flask contains. helium gas at room temperature (20 °C) and at a pressure
of 1.00 atmosphere (i.e., 1.01 X 103 N/m2. What is the pressure of this helium

gas when the flask is immersed in liquid hydrogen whose temperature is
-253°C? <a-27>

D. Molecular quantities and Boltzmann’s constant

The ideal-gas law pV = NkT can be used not only to measure the ratio of
two absolute temperatures, but should also allow one to measure the quantity kKT
itself (i.e., the basic temperature  =-1/kT). However, in order to do this, one
needs information about the number N of molecules in a gas. The next few
paragraphs review some concepts familiar from chemistry to indicate how such
information can conveniently be specified.

Specification of molecular masses. Information about the number of
molecules in a substance can most readily be obtained from information about
masses. The mass of a molecule (or single atom) can conveniently be specified
in terms of the atomic mass unit u which is approximately equal to the mass of

the hydrogen atom. More precisely, the atomic mass unit is defined in terms of
the mass m¢ a particular species of carbon atom (the isotope carbon-12).

, . " ~Mc
Def: | Atomic mass unit: u= 12 D-1)

The mass m of any molecule can then be specified as a multiple of this atomic

mass unit by writing m = L u where the quantity p (denoted by the Greek letter
mu) is called the molecular weight of the molecule.

Def: | Molecular weight: p= % . (D-2)

For example, the molecular weight of the carbon-12 atom is exactly 12 and the
moleculdr weiglit of the iydrogen atom is approximately 1.

11

The term molscular weight is really a
misnomer since it refers to a mass (and not
a weight). Since it denotes a ratio, it is ailso
a pure number without any associated units.

PRI .
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Number of molecules and amount. The number N of particles (molecules

or atoms) can conveniently be expressed as a multiple of some standard number
Nj called Avogadro’s number or mole. By international convention, this number

is defined so that

Def: | Avogadro’s number (mole): The number N, of carbon-12 D-3)
atoms having a total mass of 12 gram,

Equivalently, this is the number of particles, of mass u, having a total mass of
one gram. (Thus N, = gram/u so that Avogadro’s number can been determined
by measuring the atomic mass unit in terms of grams.) The numerical value of
Avogadro’s number is found to be approximately

l N, = mole = 6.02 x 1023 ] (D-4)

Any number N of particles can then be expressed in terms of moles (i.c., as a
multiple of Avogadro’s number) by writing N = v N, where the quantity v
(denoted by the Greek letter nu) is called the amount of particles. This amount
(or number of moles of particles) is thus defined as follows:

Def: | Amount: v =£= N .
N; mole

D-5)

A mole is thus-a unit of amount in the same way that a dozen (denoting twelve
things) is a unit of amount.

Molar expression of the ideal-gas law: The ideal-gas law (B-8) can be
conveniently expressed in terms of the amount v of gas instead of the number N
of molecules. Since N =v N,, one gets

or ©-6)

where the constant R is called the gas constant.

Def: | Gas constant: R =Ngzk. D-7)

Determination of Boltzmann’s constant. The ideal-gas law (D-6) can be
used to measure the gas constant R. This can be done by enclosing a known
amount of ideal gas (i.e., a known.number v of moles) in.a container of known
volume V, and then measuring the pressure p of the gas at a known absolute
temperature (e.g., at the triple point of water where T = 273.16 K). All the
quantities in (D-7) are then known so that one can find the value of the gas
constant R. Thus one finds the numerical value

| R=8.31J/(K mole). | (D-8)

By combining this with the known value (D-5) of Avogadro’s number, one then
obtains the corresponding value of Boltzmann’s constant k = R/N,. Thus one
finds that

Amadeo Avogadro (1776-1856) was an
Italian physicist who inferred from
experiments on gases that the number of
molecules per unit volume is the same for all
gases at the same temperature. His
conclusions became only accepted after his
death.
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k=1.38 x 1023 JK, D-9)
| B K. |

Since the entropy of a system was defined so that S = k InQ, the entropy has
the same units as k (i.e., it too has the units of joule/kelvin).

Once that measurements have been used to determine the values of the
fundamental constants N, and k, all other quantities of interest can be readily
measured or calculated. For example, the ideal-gas law (D-6) allows one to find
the pressure produced by any amount of gas in any volume at any temperature.
Many other quantities depending on the absolute temperature can be similarly
calculated.

Example: Molecular speeds in a gas

We know from (A-6) or (A-10) that the average center-of-mass
kinetic energy K, of a molecule in any ideal gas is

K,=%kT. (D-10)

Room temperature is about 20 °C corresponding to an absolute
temperature of about (20 + 273) K or 293 K. Hence the average kinetic
energy of a gas molecule at room temperature is

Ky=3(1.38x 103 JK) 293K) =6.1x 10211, (D-11)

Let.us then estimate the typical speed v of such a molecule. If the
mass of the molecule is m,

K, =-21-mv2

so that v= 2_I§_1_ D-12)
m

Suppose that the gas is nitrogen gas consisting of N, molecules each of
which consists of two nitrogen atoms. Since the atomic weight of a
nitrogen atom is 14, the molecular weight of a nitrogen molecule is 28.
This means that one mole of nitrogen molecules (i.e., 6.023 x 1023 such
molecules) have a mass of 28 gram. The mass m of a single nitrogen
molecule is then

= 28 x 103k =46 '26k D-
m 6.023 % 1023 .6x 10 g. (D-13)

Hence (D-12) leads to the following estimate of a typical speed of a
nitrogen molecule

_a[2(61x1021D) _ ]
v= N Gx 1005 = 0ms. (D-14)

This speed is roughly the same as the speed of sound in air.

Problems

[D-1] Ideal gas under standard conditions

A gas is conventionally considered to be under “standard conditions” when
it is at a temperature of 0 °C and at atmospheric pressure (1.01 X 105 N/m?).

13
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(a) What is the volume of one mole of such an ideal gas under standard
conditions?

(b) How many molecules per cubic centimeter are there in such a gas under
standard conditions? <a-20>

[D-2] Carbon dioxide molecules in air

Carbon dioxide molecules are commonly introduced in our surrounding air
as a result of combustion or respiration processes. Such a carbon dioxide
molecule (CO,) consists of one carbon atom and two oxygen atoms. The atomic

weight of a carbon atom is 12 and that of an oxygen atom is 16.

(a) What is the mass (in kilograms) of such a carbon dioxide molecule?

(b) Estimate the average speed of such a carbon dioxide molecule in air at a
temperature of 20 °C. <a-25>

[D-3] Volume change of a rising weather balloon

A weather balloon at ground level is loosely inflated with helium gas at a
temperature of 20 °C and at an atmospheric pressure of 1.01 x 105 N/m2. When
the balloon reaches a height several kilometers above the earth’s surface, the
pressure of the helium gas is very nearly that of the surrounding atmosphere
(5.20 x 104 N/m?) whose temperature is — 43 °C. What then is the volume of
the balloon if its volume at ground level was V,? <a-17>

E. Summary

Definitions
Triple point: The situation where all three forms of a substance (liquid, solid,
and gas) can coexist in mutual equilibrium.
Absolute temperature at the triple point of water:
The kelvin unit of absolute temperature is defined so that T; = 273.16 K.
Celsius temperature 6¢: 6c/°C =T/K - 273.15.
Atomic mass unit: u=mgy/12 (m¢e = mass of a carbon-12 atom).
Molecular weight: 1 =m/u (m = mass of particle)
Avogadro’s number (mole):
The number N, of carbon-12 atoms having a total mass of 12 gram.
Amount of particles: v = N/N; = N/mole.
Gas constant: R=N,k.

Important knowledge

Average kinetic energy (of center-of-mass motion) of a gas molecule:

Ky =2KT.

Internal energy of an ideal gas is independent of its volume.
Ideal-gas law: Relation between pressure, volume, and absolute temperature.
pV =NKkT = vRT.
Numerical values of physical constants:
Avogadro’s number: Nz =6.023 x 1023
Bolzmann’s constant: k= 1.38 x 10-23 /K
Gas constant: R =N, k=8.31J/(K mole).



6. Ideal gases and absolute temperature

New abilities
You should now be able to do the following:

(1) Relate the kinetic energy of gas molecules their absolute temperature, and
relate the total energy of an ideal gas to its volume.

(2) Apply the ideal-gas law (pV = NkT = VRT) to find any of the quantities in
this law from a knowledge of the others.

(3) Describe how ideal-gas thermometers can be used to measure the absolute
temperature of a system.

Problems

[E-1] Properties of air

About 75% of the molecules of air are nitrogen (N,) molecules and about
25% of them are oxygen (O,) molecules. The atomic weight of a nitrogen (N)
atom is 14 and the atomic weight of an oxygen atom (O) if 16.

(@) What is the total number of molecules contained in 1.00 m3 of air at room
temperature (20 °C) and at atmospheric pressure (1.01 x 107 N/m2)?
(b) What is the mass of this volume of air? <a-19>

[E-2] Typicaldistance between molecules in a gas

A gas consists of N molecules in some container of volume V. Consider
this gas at room temperature (20 °C) and at atmospheric pressure
(1.01 x 10° N/m?).

(a) What is the average volume 7V/N occupied by a single molecule in this
gas?
(b) Imagine that.each molecule is at the center of a sphere having this volume.

How large would be the radius of this sphere? <k-5>
(c) By imagining that all these spheres fill the volume of the container, estimate

the average distance between neighboring molecules in the gas.

(d) Roughly how much larger is this distance than the typical size of 2 molecule

(about 1010 m)? <a-15>

[E-3] Thermal diffusion of uranium isotopes

Uranium (U) atoms consist mostly of 238U atoms which have an atomic
weight or 238. However, the chain reaction leading to nuclear fission (and thus
to the production of nuclear energy) occurs predominantly in the nuclei of 235U
atoms which have an atomic weight of 235 because they contain fewer neutrons
in the atomic nucleus. To produce uranium rich in 235U atoms, one needs then
to separate these atoms from the- much more abundant 238U atoms. This can be
done by a process of gaseous diffusion which exploits the fact that in uranium
hexafluoride (UF¢) gas the molecules containing 235U atoms move with slightly
different speeds than the molecules containing 238U atoms.

In such a gas of hexafluoride, what is the ratio vy35/v43g of the average speed
vy35 of molecules containing 235U atoms compared to the average speed v,3g of

molecules containing 238y atoms? [The atomic weight of a fluorine (F) atom is
19.] <a-24>

[E-4] Free expansion of a dense gas

A gas is dense if the number n of molecules per unit volume is large enough
that the potential energy U of interaction between the molecules is appreciable.
The total energy E of the gas is then the sum K + U of the kinetic energy K to
the velocities of all the molecules and the potential energy U due to the positions
of all the molecules. Similarly, the total entropy of the gas is the sum of the
entropy due to all the possible velocities of its molecules and the entropy due to

15

The situation here is analogous to that
discussed in Sec. 5A where two systems are
in thermal equilibrium. In the present case
the two systems are the system consisting
of all molecular velocities and the system
consisting of all molecular positions.
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all the possible positions of these molecules. In equilibrium, where this total
entropy is maximum, both positions and velocities are then characterized by the
same absolute temperature T. The kinetic energy K is then related to T by the

familiar relation K =% NKT and the potential energy U is related to T in some

way depending on the nature of the intermolecular interactions.

Suppose that the molecules in the gas interact by mutually attractive forces.
Consider the free expansion of this gas, as previously illustrated in Fig. A-1 and
discussed in Problem A-3.

(a) In this expansion, does the total energy of the gas increase, decrease, or
remain the same?

(b) Does the potential energy U of intermolecular interaction increase, decrease,
or remain the same? Why? <h-11>

(c) Does the kinetic energy K of the molecules increase, decrease, or remain the
same? Why?

(d) Does the absolute temperature of the gas increase, decrease, or remain the

" same? <a-9>

[E-5] Mixture of helium and nitrogen gas
An ideal gas, consisting of 0.80 moles of helium gas (consisting of He

atoms) and of 0.20 moles of nitrogen gas (consisting of N, molecules) is

contained in a vessel at a fixed temperature. The atomic weight of a helium atom

is 4 and the atomic weight of a nitrogen atom is 14.

(a) What is the mass of the gas in the container?

(b) What is the ratio Myel/Mpit Where Nper is the number of helium atoms
striking a wall of the vessel per second and where ;¢ is the number of
nitrogen molecules striking this wall per second?

(c) Suppose that the 0.80 moles of helium gas is replaced by 0.80 moles of
oxygen gas (consisting of O, molecules having a molecular weight of 32).

If everything else remains the same, is the pressure exerted by the gas
mixture than larger than, smaller than, or the same as before? <a-16>

[E-6] Air bubble rising-in a lake

The temperature of the water at the bottom of a 30 m deep lake is 4 °C and
the pressure.there is about 4.0 x 105 N/m2. An air bubble, formed at the bottom
of this lake, slowly rises to its surface where the temperature is 20 °C and the
pressure is 1.0 x- 105 N/m2. What is the ratio R/R of the radius R' of this bubble

at the surface of the lake compared to its initial radius R when it was at the
bottom of the lake? <h-5> <a-13>

[E-7] Measuring the change of basic states available to a system

The energy of a system is increased by 0.001 joule when the system is
illuminated by light from a lamp: Pescribe how you could actually measure the
resulting increase in- the basic entropy 1nQ of the system (and thus also the
corresponding increase in the number Q of basic states available to the system)?
<a-2>

[E-811 Connected containers of gas
Fig. E-1 shows two containers, of volume V; and V,, connected by a thin
tube and filled with an ideal gas. The gas in both containers is initially at the

same absolute temperature T and at the same pressure p. After the absolute
temperature of the gas in the second container is raised to a new value T, the

gas pressure in both containers reaches a new common value p'.
(a) What is the value of this pressure?

(b) What is the numerical value of the ratio p'/p if the volume of the second \_ Y,
container is twice as large as that of the first (so that V, = 2 V) and if the Fig. E-1. Two containers filled with gas

absolute temperature of the gas in the second container is increased by 25% .54 connected by a thin tube.
(so that T, = 1.25T)? <h-3> <a-23>
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[E-9] Volume change of a monatomic gas

The ideal monatomic gas, enclosed in the cylinder shown in Fig. E-2, is
maintained at the constant pressure p of the atmosphere. When the gas is heated,
its volume gradually expands from an initial volume V, to a final volume Vy,

(a) In this process, what is the work done on the gas by the atmosphere?
(b) What is the change of the internal energy of the gas? <h-2>
(c) What is the heat absorbed by the gas? <a-26>

[E-10}1 Quasi-static process of helium gas
One mole of helium gas (whose molecules are single helium atoms) is taken

quasi-statically from the macrostate A to the macrostate B, and from there to the
macrostate C. In the graph of Fig. E-3, these processes are indicated by the
straight line connecting the points A and B, and the straight line connecting the
points B and C. Use your knowledge of the properties of ideal gases to answer
the following questions:

(a) In the process AB, what is the work done on the gas? What is the heat
absorbed by the gas? What is the change of the internal energy of the gas?
<h-8>

(b) In the process BC, what is the work done on the gas? What is the heat
absorbed by the gas? What is the change of the internal energy of the gas?

(c) In the entire process ABC, what is the work done on the gas? What is the
heat absorbed by the gas? What is the change of the internal energy of the
gas? <a-21> .

[E-11]1 Cyclic process of a monatomic ideal gas

The graph in Fig. E-4 shows how the pressure p of one mole of a
monatomic ideal gas varies with. its volume in the quasi-static cyclic process
ABCA. In the process AB, the volume of the gas remains constant. The process
BC is adiabatic. In the process CA, the pressure of the gas remains constant.

Express the answers to all the following questions solely in terms of the gas
constant R and the absolute temperatures T,, Tg, and T of the gas in its
macrostates A, B, and C. Indicate your reasoning.

(a) In the process AB, what is the work done on the gas? What is the heat
absorbed by the gas? What is.the change of the internal energy of the gas?
<h-9>

(b) Answer the same questions forthe process BC.

(c) Answer the same questions for the process CA. <h-6>

(d) Answer the same questions for the entire cyclic process ABCA. Is the work
done on the gas in this cyclic process positive, negative, or zero? Is the heat

absorbed by the gas in this cyclic process positive, negative, or zero?
<a-4>

[(E-12] Temperature relations in the preceding process

Consider again the monatomic ideal gas experiencing the cyclic quasi-static
process indicated by the graph in Fig. E-§. Answer the following questions and
indicate your reasoning.

(a) Is the absolute temperature Ty larger than, smaller than, or equal to the
absolute temperature T,? <h-2>

(b) Is T¢ larger than, smaller than, or equal to Tg?

(¢) Is Ty larger than, smaller than, or equal to T¢?

(d) List the absolute temperatures T, Tg, and T in the order of their increasing
magnitudes. <a-29>
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