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The statistical equilibrium postulate, introduced in the last chapter, implies
that all macroscopic systems share some general properties and can be described
by some useful special concepts. These properties and concepts will be
discussed in the next few sections and will afterwards be widely applied to more
specific situations.

A. Equilibrium and fluctuations

Simplicity of equilibrium situations
A situation where a macroscopic system is in equilibrium is particularly
simple for the following reasons:

(1) By its definition, an equilibrium situation is one which does not change
with time. (More precisely, the probability that a system is found in any of its

basic states does not change with time.)

(2) According to the statistical equilibrium postulate (3B-2), a system in
equilibrium is equally likely to be found in any one of its possible basic states.

(3) An equilibrium situation is ultimately reached by any isolated
macroscopic system after one waits for a sufficiently long time. Furthermore,
this equilibrium situation does not depend on the past history of the system.

(4) Probabilities are defined by considering what happens in a statistical
assembly of a large number & of similar systems. But, if a system is in
equilibrium so that these probabilities do not change, one can equivalently focus
attention on a single system observed at v different times. (For example, one
can imagine taking a movie of the system and then looking at % frames of this
movie. Considering such an assembly of & frames of a single system at
different times is then equivalent to considering an assembly of #'systems at any
one time.)
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2 4. General properties of macroscopic systems

Probabilities in equilibrium

The macroscopic information available about any macroscopic system is
very limited. For example, we might know the volume V of such a system and
its total internal energy E (which remains constant if the system is isolated).
This information might then be sufficient to determine the macroscopic state of
the system. However, the system can then still be in any one of an extremely
large number of possible basic states (corresponding to the many different
possible positions and velocities of the atomic particles in the system).

Probability of being in any basic state. Suppose the total number of
possible basic states available to the system is denoted by Qo (Where Q is the
Greek letter capital omega). The statistical postulate (3B-2) then asserts that, if
the system is.isolated and in equilibrium, it is equally likely to be in any one of
these possible states. Hence the probability P; that the system is in any one of
these basic states is

P, =QL (for any basic state r). (A-1)
tot

Probability of being in any macrostate. Suppose now that one wants to
find the probability P, that the system is in any particular macroscopically
specified situation (or macrostate) A. In such an equilibrium situation the
system can be, with equal probability, in some number Q, of possible basic
states (out of the total number Ly of basic states available to the system in all
possible situations). Hence the probability P, that the system is in such a

macrostate A is

Py=7— (for any macrostate A) . (A-2)

In other words, the probability of being in a particular macrostate is simply
proportional to the number of possible basic states available in this macrostate.
Situations corresponding to a larger number of possible basic states occur thus
with greater probability than situations corresponding to a smaller number of
possible basic states.

Example: Gas of four molecules in equilibrium

To illustrate the preceding ideas, consider an isolated gas of N molecules.in 4 w
abox. (For example, Fig. A-1 illustrates schematically an extremely simply gas @
consisting of only four such molecules.) These molecules can move throughout @
the interior of this box, colliding occasionally with the walls and with each €]
other. We are interested in the probability Py, of encountering a situation where -0

some number n of these molecules are found in the left half of the box (so that

- J
the remaining n' = N — n molecules are found in the right half of the box). In

. . o s o Fig. A-1. A of four molecules
particular, we are interested in this probability when the gas has been left sitting di‘sgtributed over thiativo halves of a box.

for a long enough time that it has reached equilibrium (i.e., so that this
probability Py, remains unchanged in time).

Since we are not interested the velocities of these molecules, we shall
merely focus attention on theirpositions. Furthermore, the-left and right halves
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of the box have the same size. Hence the number of possible positions available
to a molecule in the left half of the box is equal to the number of possible
positions available to it in the right half. In the equilibrium situation where any
of these possible positions is equally likely, any molecule will thus be found
with equal probability in the left half or the right half of the box.

The basic state of the gas can then be specified with adequate precision by
specifying whether each molecule is in the left half or the right half of the box.

Total number of basic states. What is the total number £ of such basic
states when we are dealing with a gas of N molecules? Consider the simple case
of Fig. A-1 where we are dealing with only 4 such molecules (labeled by 1, 2, 3,
and 4). The first of these molecules can be in two possible basic states, i.e., in
can be either'in the left half or the right half of the box. Corresponding to each
of these two-possibilities, there are two possibilities for the second molecule
(i.e., it too can be either in the left half or the right half). Hence there are 2 X 2 =
22 = 4 possibilities for these two molecules. For each of these possibilities, there
are 2 possibilities for the third molecule. Hence there are 22 x 2 = 23 = 8
possibilities for these three molecules. Continuing in this way, we see that the
total number Qo of possibilities for four molecules is equal to

Qior =24 =16. (A-3)

Enumeration of possible basic states. These 16 possible basic states are
explicitly listed in Fig. A-2. Each state is indicated by specifying which of the
four molecules (labeled 1, 2, 3, and 4) are in the left half of the box and which of
the remaining molecules are in the right half of the box.

Calculation of probabilities. Out of these 16 equally likely basic states,
how many states are there in which n molecules are located in the left half of the
box? Fig. A-2 shows that there is only one state in which all the four molecules
are located in the left half of the box. Hence the probability P4 that all the 4
molecules are located in the left half is

1
Py= 6= 0.0625. (A-4)
Similarly, there is only one state in which all the molecules are located in the

right half of the box (i.e., which no molecules are located in the left half). Hence
the probability Py that zeré molécules are in the left half of the box is similarly

P, =7¢ = 00625 (A4)

Out of the 16 basic states listed in Fig. A-2, there are 4 states in which 3

molecules are in the left half (and the remaining one molecule is in the right

half) Similarly, there are 4 basic states in which 1 molecule is in the left half

(and the remaining 3 molecules are in the right half). The probability P that 3

molecules are in the left half, or the probability P; that 1 molecule is in the left
half are thus each equal to

P; =P, = \f(4/16) = 0.25. (A-5)
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Fig. A-2. Possible position states for 4
molecules each of which can be either in the
left or right half of a box. Here n denotes the
number of molecules in the left half and n'
the number in the right half. The molecules
are labeled 1, 2, 3, and 4.
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Finally, out of the 16 basic states listed in Fig. A-2, there are 6 states in
which 2 molecules are in the left half and the remaining 2 molecules are in the
right half. Hence the probability P, that this happens is

P2 = % = 0.375 (A"4)

The preceding calculated probabilities are summarized in the bar graph of
Fig. A-3.

Predictions about this gas. Consider a statistical assembly of a very large
number of gases in equilibrium, each gas similar to the one in Fig. A-3. Then
the preceding probabilities predict in what fraction Pn of these gases one will
observe n molecules in the left half of the box. Since the gas is in equilibrium so
that the probabilities don’t change with time, one could equivalently take a
movie of the gas and consider a very large number of successive movie frames
(similar to those illustrated in Fig. A-4.) Then the preceding probabilities
predict in what fraction Pn of these frames one will observe n molecules in the
left half of the box. For example, one would predict that 1/16 (or about 6%) of
these frames would show all molecules in the left half of the box and that 6/16
(or about 37%) of these frames would-show equal numbers of molecules in both
halves of the box.

The following features are worthy of note:

(1) An extreme situation where all molecules are in one half of the box.can
be realized in only one possible way. Hence it is relatively unlikely (probability
of 1/16) that such a situation occurs.

(2) A situation where equal numbers of molecules are in both halves of the
box can be realized in the largest possible numbers of ways. Hence it is most
likely (probability 6/16) that this situation occurs.

(3) Although the probabilities do not change in the equilibrium situation,
the number of molecules in any half of the box fluctuates in the course of time
(as is apparent in Fig. A-§). In other words, this number molecules, observed at
different times, is most likely to be equal to 2. But this number of molecules can
also be different from 2, although values that deviate appreciably from 2 are
increasingly less likely to be observed.

Problems

[A-1] Gas of six molecules in equilibrium

Consider a very simple gas consisting of 6 molecules in equilibrium inside a
box. Each of these molecules is then equally likely to be-found in the left half or
the right half of the box.

(a) What is the total number of ways that these molecules can be distributed
over the two halves of this box?

(b) In how many ways can these molecules be distributed so that all of them are
in the left half of the box?

(c) List (in a manner similar to that in Fig. A-2) all the ways that these
molecules. can be. distributed so that half of them (i.e., 3 molecules) are in
the left half of the box. How many such ways are there? <h-3>

Py
0.4
03
0.2

0.1
0.0

01 2 3 4 n
- S

Fig. A-3. Probability Py that n molecules,
out of the 4 molecules of the gas in Fig. A-1,
are located in the left half of the box (when
this gas is in equilibrium).
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(d) What is the probability Py that all 6 of the molecules are found in the left
half of the box? What is the probability that 3 of these molecules are found

in the left half of the box?

(e) What is the ratio P¢/P3? (This ratio compares the probability Pgof the
extreme situation, where all molecules are in the left half of the box, with
the probability P; that half of the molecules are in each half of the box.)

<a-8>
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Fig. A-4. Successive movie frames of a

gas of 4 molecules in equilibrium inside a box.
[The figure was produced by a computer-generated simu
colliding with each other"and with the walls of the box.]

lation of a gas of 4 molecules
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B. Fluctuations in equilibrium

The preceding examples of very simple gases indicate that, even when a
system is in equilibrium, observable macroscopic quantities (like the number n
of molecules in one half of a box) don’t remain constant but fluctuate in the
course of time. How large are such fluctuations?

The size of fluctuations depends on the number N of particles in the system.
For example, let us compare the probability Py of the extreme situation where all
N molecules are in one half of the box with the probability Py, of the most
likely situation where half of the molecules are in each half of the box. In the
case of a gas of 4 molecules, the probability of the extreme situation is 6 times
smaller than that of the most likely situation. But in the case of the gas of 6
molecules, the probability of the extreme situation is 20 times smaller than that
of the most likely situation.

Example: Gas of forty molecules in equilibrium

To examine how fluctuations are affected by the number N of particles,
consider a gas of forty molecules in equilibrium inside a box. (Fig. B-2 shows a
computer simulation of movie frames taken of such molecules at successive
times.) Since each of the 40 molecules can be in either of the two halves of the
box, there are 240 = 1.1 x 1012 possible ways that these molecules can be
distributed over the two halves. Out of this total number of ways, there is only
one way in which all the molecules can be in one half of the box. The
probability that this happens is thus only 1/240 = 10-12, This extreme situation
would thus practically never be observed. By contrast, there are very many
ways in which the molecules can be distributed so that equal numbers of
molecules are in both halves of the box. (Indeed, calculation show that there are
more than 101! such ways.) Hence it is very likely (indeed, most probable) that
the molecules are equally distributed over both halves of the box.

Probabilities of various situations. Fig. B-1 shows the calculated
probabilities-that n out of the 40 molecules are located in the left half of the box.
As already mentioned, the most probable situation is that where the molecules
are equally distributed over both halves of the box (i.e., where 20 molecules are
in each half). But fluctuations deviating from this situation can occur with
varying probabilities.

Deviations from the most probable situation. The magnitude of a
fluctuation may be described by the magnitude of the difference An = n - N/2
between the number n of molecules in the left half of the box and the most
probable number N/2 = 20. As is apparent from Fig. B-2, situations
corresponding to deviations of small magnitude |An| are somewhat less likely to
occur than the most probable situation. But situations where the magnitude of
this deviation is as large 10 (i.e., where n is less than 10 or larger than 30) are
quite rare. Indeed, a situation where the number of molecules in any half of the
box is less then 10 occurs only with a probability less than 1% as large as the
probability of the most probable situation. And a situation where the magnitude
of this deviation is as large as 15 (i.e., where the number of molecules in any

Problem G-3 indicates how these
probabilities can be calculated.
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Fig. B-1. Probability P, that n molecules,
out of a gas of 40 molecules in equilibrium,
are found in the left half of the containing
box.
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half of the box is less than 5) occurs only with a probability less than 0.001% as
large as the probability of the most probable situation. Such a situation is thus

almost never observed.

o

-

o® ol0)

[}
e
®

[
o ® ) ®®@ ®
@ 1]
© o o L e @
® o0 ©
® ® L0
P oo o @ ®
®© ! o®
pil 114
® T PR OF
® ' ®
@@@ %Y | ®e® o
1] @
o}
@® b%@ ° ©
® @ :
® ® .® ® @®@ ® ® ®®
)
20 ] 20
] G
o - oo ®0°
® o ®
® ® . o ® 5
o ®®®@© : 2R
) ® , o
® ® @
®Q®@ ®
19 21
® ®
®p 6° ©%0
@ @ i @ @
® ® ® @ o
° e® et &
0 © @ & oo
e} @
18 E 22
®
® ) > ®®
- )
® © ® L 0 0 e
© ® ! [©F0)
Qg ® @ ® ® @
o ® : ®
® @
22 E 18
-

Fig. B-2. Successive movie frames of a gas of 40 molecules in equilibrium inside a box.
[The figure was produced by a computer-generated simuiation of a gas of 40 molecules
colliding with each other and with the walls of the box.]
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Summary. If a gas of N molecules is in equilibrium inside a box, the
number of molecules in any half of the box is most likely equal to its most
probable value of N/2 (corresponding to equal distribution of the molecules
throughout the box). Fluctuations about this value do occur. (For example,
Fig. B-3 indicates the fluctuations observed in the case of the gas of 4 molecules
illustrated in Fig. A-4 and the gas of 40 molecules illustrated in Fig. B-2.) But if
the number of molecules is large, these fluctuations are relatively small (i.e.,
very large deviations from the most probable situation are highly unlikely to
occur).

Fluctuations in a real gas

The preceding very simple examples illustrate that fluctuations become
relatively smaller when one deals with a gas consisting of a larger number of
molecules. Let us then consider an actual gas consisting of a realistically large
number N of molecules in equilibrium, e.g., at a gas consisting of some 1024
molecules.

In such a situation, the most probable situation is again that were the
molecules. are. equally.distributed. throughout. the.box (i.e., the situation. where
N/2 = 5 x 1023 molecules are in each half of the box). Fluctuations about this
number again occur. (See Fig. B-4.) Indeed, in a gas of 1024 molecules, one is
quite likely to encounter situations where there are 1012 more molecules in one
half of the box than in the other half. On the other hand, one is very unlikely to
encounter situations where the number of molecules in both halves differs by
much more than 1012,

Fluctuations differing from the most probable number by as many as 1012
molecules may seem large. But, compared to the most probable number of
5 x 1023 molecules they are exceedingly small (i.e., they are about 1012 times
smaller than this most probable number). Indeed, for most practical purposes,
they are utterly negligible. Observations of the gas will' then almost always
show that half of the molecules are in either half of the box.

General conclusion

The insights derived from the preceding examples of gases are more
generally applicable to any macroscopic system. When such a system is in
equilibrium, any of its macroscopically measurable quantities remains always
very close to its most probable. value which does not change with time. But
fluctuations about this value do occur. The relative size of these fluctuations is,
however, so very small that they are ordinarily of negligible importance,
especially in the case of a macroscopic system consisting of very many atomic
particles.

These fluctuations may become significant in certain cases, especially if the
system is small or if highly precise measurements need to be made. Indeed, the
existence of these fluctuations often determines the maximum possible precision
with which various quantities can be measured.
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Fig. B-3. Number n of molecules found in
the left half of a box. (a) In successive
frames of the gas of 4 molecules in Fig. A-4.
(b) In successive frames of the gas of
40 molecules in Fig. B-2.

In general, one can show that fluctuations
much larger than VN are.very unlikely.
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Fig. B-4. Fluctuations (shown much

exaggerated) in a the number n of molecules
in one half of a box of gas. (a) When the gas
is in equilibrium. (b) When the gas is
approaching an equilibrium situation.
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Problems

[B-1] Energies of systems in thermal equilibrium
A spoon is immersed in a cup of tea. The entire system (consisting of the

spoon and cup of tea) is thermally insulated from its surroundings.

(a) Can the internal energy of the spoon change? Can the internal energy of the
cup of tea change? Can the internal energy of the entire system (consisting
of the spoon and the cup of tea) change?

(b) In equilibrium, does the internal energy of the spoon tend to change in the
course of time? If not, does it fluctuate about some most probable value?

(c) In equilibrium, does the internal energy of the cup of tea tend to change in
the course of time? If not, does it fluctuate about some most probable
value?

(d) If fluctuations in energy occur, how large are these compared to the internal
energy of the spoon or the cup of tea?

(d) Suppose.that the internal energy of the spoon increases momentarily as a

result of a small fluctuation. What then happens to the internal energy of
the cup of tea? <a-2>

[B-2] Hanging pendulum in equilibrium
Fig. B-5 illustrates a pendulum hanging at rest while suspended from the
ceiling of a room.

(a) Is the pendulum bobrthen really not moving at all, or is it fluctuating slightly
about its equilibrium position?

(b) The pendulum bob is constantly bombarded by the molecules of air in the
room. Explain qualitatively why this random bombardment can lead to
fluctuations-in the pendulum bob’s position.

(c) If the air in thie room is pumped.out, the pendulum is no longer bombarded
by any air molecules. Would the position of the pendulum bob then still
fluctuate? Explain why. <h-5> <a-6>

[B-3] Brownian motion

A microscope can be used to observe small particles (about 10-6 m in size)
immersed in a liquid. It is found that these particles are not at rest, but move
about so that their positions change in random ways.

(a) Explain why one would expect to observe such fluctuations in position.

(b) Would you expect these fluctuations to be larger or smaller if the particles
are larger and have larger masses? Why? <a-10>

C. Approach to equilibrium

Suppose that an isolate macroscopic system is in a situation where it is not
with equal probability in each of its possible basic states. According to the
fundamental equilibrium postulate (3B-2), the system is then not in equilibrium.
Hence the system will change until it ultimately reaches an equilibrium situation
where it is found with equal probability in each of its basic states.

Example of a gas approaching equilibrium

Fig. C-1a shows a box divided into two halves by a partition. A gas is
initially in equilibrium inside the left half of the box and the partition is then
suddenly removed. The- situation- immediately afterwards is illustrated in
Fig. C-1b. It is now possible for each molecule to be located anywhere in the

9
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Fig. B-5. A pendulum suspended from the
ceiling.

Such random motions of pollen grains were
first observed in 1827 by the Scottish
botanist Robert Brown (1773-18568). This
"Brownian motion” was quantitatively
explained by Albert Einstein in 1905.
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entire box. However, in the actual situation illustrated in Fig. C-1b, each
molecule is equally likely to be anywhere in the left half of the box, but has zero
probability of being in the right half. This is thus clearly not an equilibrium
situation.

What then happens? As the molecules move about, it is exceedingly
unlikely that they all remain in the left half of the box. Instead, they will
gradually spread out throughout the entire box until they reach the equilibrium
situation illustrated in Fig. C-1c where each molecule is equally likely to be
anywhere in the entire box.

Time required to reach equilibrium

The preceding argument, based on the statistical equilibrium postulate
(3B-2), allows us to infer how the gas will change and what final equilibrium
situation will thereby be reached. However, it does not make any statements
about how long a time is required for this equilibrium situation to be reached.

Indeed, the change illustrated in Fig. C-1 would occur quite rapidly. On the
other hand, consider the similar situation illustrated in Fig. C-2 where the
partition is not removed, but a small hole is made in it. All positions throughout
the entire box become thereby again available to each molecule. Hence the
molecules again spread out and finally reach the same equilibrium situation as

before (where each molecule is equally likely to be anywhere in the box). But
the time required for this equilibrium situation to be reached depends crucially
on the:size of the hole and could be quite large if the hole is small.

Problems

[C-1] Ink drop falling into water

A drop of ink, containing 102! ink molecules, falls into a glass containing
100 cm3 of water.

(a) Will the drop of ink remain near the surface of the water or will the ink
gradually spread out throughout the entire glass of water?

(b) How many molecules of ink per cm3 of water will there be in the final
equilibrium situation? <a-I>

[C-2] Thermal interaction between two copper blocks

A block of copper, consisting of N copper atoms and having an internal
energy E, is placed on top of another block of copper consisting of a different
number N' copper atoms and having an internal energy E'. (See Fig. C-3.) The
entire system, consisting of both blocks, is thermally insulated from its
surroundings.

(@) In an equilibrium situation, is it most likely that the average energy each of
the copper atoms is the. same, or is it more likely that some copper atoms
have significantly larger energies than some other copper atoms?

(b) Suppose that the average energy E/N of an atom in the top block is initially
larger that the average energy EVN' of an atom in the bottom block. Will
this situation persist or will it change? If it changes, will the internal energy
of the top block increase, decrease, or remain the same? Will the internal
energy of the bottom block increase, decrease, or remain the same? Will the
total internal energy of both blocks increase, decrease, or remain the same?
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Fig. C-1. A gas inside a box. (a) Initially
confined to the left half by a partition.
(b) Immediately after the partition is
removed. (c) Final equilibrinm situation.
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Fig. C-2. A gas inside a box. (a) Initially
confined to the left half by a partition.
(b) Immediately after a hole is made in the
partition. (c) Final equilibrium situation.
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Fig. C-3. A copper block placed on top of
another copper block.
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(c) Is the heat absorbed by the top block positive or negative? Is the heat
absorbed by the bottom block positive or negative? Is the magnitude of the
heat absorbed by the top block larger than, smaller than, or equal to the
magnitude of the heat absorbed by the bottom block?

(d) After the entire system has reached equilibrium, is the final internal energy
Ef of the top block equal to the final internal energy E's of the bottom
block? If, not what is the relation between these two energies?

(e) What is the final internal energy of each of the blocks? (Express your
answer in terms of their initial energies E and E' and the numbers N and N'
of atoms in the two blocks.)

() Suppose that a sheet of paper is initially placed between the top block and
the bottom block. Would the answers to the preceding questions then be
different or would they be essentially the same? Would the time required to

reach the final equilibrium situation then be longer, shorter, or the same?
<a-7>

D. Irreversibility

In science and in everyday life we observe many processes occurring in the
course of time. To what extent do these processes indicate a preferred direction
of time, i.e., to what extent do they allow us to distinguish the future from the
past?

To make this question more specific, imagine that one makes a movie of
any of these processes. One can then use a projector to play the movie either
forward or backward. By watching the movie, can one then distinguish whether
the movie is being played forward or backward? If ene cannot distinguish
which way the movie is being played, one says that the process is reversible
(i.e., that it does rot indicate a preferred direction of time). But if one can
distinguish which way the movie is being played, one says that the process is
irreversible (i.e., that it does indicate a preferred direction of time).

Reversible behavior of simple systems

Consider a pendulum swinging back and forth (under conditions of no
friction.) If one takes a movie of this situation and plays it backward, it looks
just as natural as if it were being played forward. It simply displays the familiar
situation of a-pendulum swinging baeck and forth — and there is no way of
telling whether the movie is being played forward or backward. The motion of
the swinging pendulum is thus a reversible process.

As another example, consider the planets moving around the sun in their
elliptical orbits. If one takes a movie of this situation and plays it backward, it
again looks just as natural as if it were being played forward. It merely displays
the familiar situation of planets moving around the sun — and there is no way of
telling whether the movie is being played forward or backward. The motion of
the planets around the sun is thus also a reversible process.

The preceding conclusions are not surprising because nothing in the laws of
mechanics indicates a preferred direction of time. ‘

Indeed, consider Newton's law m# = Fig
where the total force is due to fundamentat
forces (like gravitational or electromagnetic
forces). This.law remains unchanged if the
sign of the time t is reversed, (i.e., if tis
replaced by —t).

11
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Fig. D-1. Successive movie frames of a gas of 40 molecules inside a box. These frames
show the gas molecules becoming concentrated in the left half of the box. The frames in
the next Fig. D-2 show the molecules spreading out throughout the entire box. The
successive frames in both of these figures show an extreme fluctuation where all the
molecules of the gas in equilibrium become at one time (in frame 0) spontaneously
concentrated in the left half of the box. [The figure was produced by a computer-
generated simulation of a gas of 40 molecules colliding with each other and with the

walls of the box.]
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Fig. D-2. Successive movie frames of a gas of 40 molecules inside a box. These frames
show the gas molecules, initially in the left half of the box, spreading out throughout the
entire box. The frames.in the preceding Fig. D-1 showed the molecules becoming
concentrated in the left half of the box. The successive frames in both of these figures
show an extreme fluctuation where all the molecules of the gas in equilibrium become at
one time (in frame 0) spontaneously concentrated in the left haif of the box. [The figure
was produced by a computer-generated simulation of a gas of 40 molecules colliding with

each other and with the walls of the box.]
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Irreversible behavior of macroscopic systems

Gas concentrated in one half of a box. Consider a gas which is initiaily in
the left half of a box (e.g., a gas like that in Fig. C-1b) and then spreads out
throughout the entire box. Suppose that one takes a movie of this process and
then plays it backward. This backward movie would show a gas initially
concentrated in one half of a box and then spontaneously concentrating
completely in only one half of the box. This is a most unnatural process which
one would never expect to observe in real life. Hence one could immediately

conclude that the movie is being played backward. The motion of this gas is
thus an irreversible process.

PFor example, Fig. D-2 shows successive movie frames (labeled 0, 1, 2,
...,14) of a simulated gas of 40 molecules. Fig. D-1 also shows successive
movie frames (labeled —15, ~14, —13, ..., -1) of such a simulated gas. The
movie in Fig. D-2 looks natural because it merely indicates how the gas
molecules, initially in the left half of a box, spread out throughout the entire box.
But the movie in Fig. D-1 looks fake because it shows all the gas molecules
spontaneously concentrating in the left half of the box. (Indeed, this figure has
been deliberately-constructed-by reordering the frames in' backward-order:)

Reasons for observed irreversibility. Why is it that one can so readily
decide whether a movie of the preceding gas is being played backward?

If one sees all the molecules of the gas concentrated in one half of the box,
this can only be for one of the following two possible reasons:

(1) Spontaneous fluctuation. The isolated box of gas in equilibrium might,
at some time, exhibit a large fluctuation where all the molecules spontaneously
happen to move into the left half of the box. For example, Figs. D-1 and D-2
shows successive movie frames (labeled 15, 14, -13, ..., 13, 14) of a gas.of 40
molecules in equilibrium. The frame labeled by -2 -1, 0 illustrate such an
extreme fluctuation where all the molecules move into the left half of the box.

But such an extreme fluctuation would occur very rarely. For example, in
the case of the gas of 40 molecules, such a fluctuation would, on average, occur
in only one out of 240 = 1.1 x 1012 movie frames. (If the movie were taken at
the rate of 30 frames per second, such a fluctuation would thus be observed less
frequently than once in a thousand years). In the case of a real gas consisting of
about 1024 molecules, such an extreme fluctuation would occur only one out of
21024 movie frames! (One would thus have to wait much longer than 1023 times
the age of the universe before one could ever hope to observe such an extreme
fluctuation!) Thus we can be certain that such an extreme fluctuation would
never be observed in real life. If it is observed in a movie, we can thus
confidently conclude that this movie is being played backward.

(2) Prior outside intervention. Suppose that all the molecules in the gas are

ever observed in one half of the box. The only realistic reason for this can then
not be a spontaneous fluctuation, but must be some prior external intervention.

(For example, before the gas was ever observed, somebody might have used a



4. General properties of macroscopic systems

piston to compress the gas into one half of the box and could then have let the
gas spread out throughout the entire box.) But, if it is clear that some external
intervention must have occurred before the observations, it is also clear why one
can distinguish the future from the past (i.e., why one can distinguish whether
movies are played forward or backward).

Examples of irreversible processes. Most processes observed in daily life
involve macroscopic systems and are irreversible. The following are some
examples:

(1) Bouncing ball. When a ball is dropped, it bounces several times on the
floor before it comes to rest. A movie of this process, when played backward,
would show a ball which initially lies on the floor and then spontaneously starts
bouncing up-and down to reach ever increasing heights. Since this is never
observed in real life, one would immediately conclude that the movie is being
played backward (i.e., that the original process is irreversible).

Of course, it is possible that the process portrayed in the backward movie
might actually happen. Indeed, it would only require that all the randomly
moving atoms.in the ball spontaneously start, at the same time, all moving in the
same upward direction. However, this is so enormously improbable to happen
that it never occurs in actuality.

(2) Block sliding along the floor. After being given a push, a block slides
along the level floor and' gradually comes to rest. A movie of this process, when
played backward, would show a block which is initially at rest on the floor and
which then spontaneously starts moving with increasing speed. Since this is
never observed in real life, one would again conclude that the movie is being
played backward (i.e., that the original process is irreversible).

(3) Frictional interactions. The preceding example may be described by
introducing a friction force that accounts for the interactions of the block with
the floor. These interactions result in slowing down the block because some of
the macroscopic kinetic energy of the block is converted into random kinetic
energies of the atoms near the surface where the block touches the floor. This
process is much more probable than the reverse process where all these atoms
start spontaneously moving in the same direction so as to increase the block’s
speed and macroscopic kinetic energy. Frictional interactions thus lead to
irreversible processes.

Degree of irreversibility

The reverse process observed when a movie is played backwards is not
really impossible; it is ordinarily just highly improbable. Since situations can be
more or less improbable, there is no sharp distinction between reversible and
irreversible processes. In other words, irreversibility is a matter of degree and is
ordinarily more pronounced in systems involving a larger number of
independently moving atomic particles.

15
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Fig. D-3. Successive movie frames of a-gas-of-4-molecules inside a box. These frames
show the gas molecules becoming concentrated in the left half of the box. The frames in
the next Fig. D-4 show the molecules spreading out throughout the entire box. The
successive frames. in both of these figures show an extreme fluctuation where all the
molecules of the gas in equilibrium become at one time (in frame 0) spontaneously
concentrated in the left half of the box. [The figure was produced by a computer-
generated simulation of a gas of 4 molecules colliding with each other and with the walls
of the box.]
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Fig. D-4. Successive movie frames of a gas of 4 molecules inside a box. TFhese frames
show the gas molecules, initially in the left half of the box, spreading out throughout the
entire box. The frames.in the. preceding Fig. D-3 showed the molecules becoming
concentrated in. the left half of the box. The successive frames in both of these figures
show an extreme fluctuation where all the molecules of the gas in equilibrium become at
one time (in frame 0) spontaneously concentrated in the left half of the box. [The figure
was produced by a computer-generated simulation of a gas of 4 molecules colliding with
each other and with the walis of the box.]
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Example: Gas of four molecules

Fig. D-2 illustrated a highly irreversible process where a gas of 40
molecules, initially in the left half of a box, spreads out throughout the
entire box. For the sake of contrast, consider a gas of only 4 molecules
which are initially in the left half of a box and then spread out
throughout the entire box. (See Fig. D-4.) If a movie of this process is
played backward, it does not look unnatural at all. Indeed, even if such
a small gas in equilibrium, as many as one out of 24 = 16 frames would,
on the average, show all molecules in the left half of the box.

This extreme situation occurs thus actually quite frequently.
Fluctuations of this kind are thus commonly observed (as illustrated in
Figs. D-3 and D-4 by the successive movie frames labeled -15, -14, ...,
13, 14.), Correspondingly, a movie played backward looks just about
as realistic as one played forward, i.e., the original process may be
considered reversible.

Problems

[D-1] Deciding whether a movie is being played backward

Several movies portray the situations described below. In each case, do the
following:

(1) Decide whether the process observed in the movie is one which could
occur in actuality or which is very unlikely to occur in actuality. Is the movie
being played backward or can’t one tell?

(2) For each of these movies, describe the actual process that was filmed Is
this a reversible or irreversible process?

The following situations are seen in the movies:

(a) A box, lying on the floor, rises and lands on the top of a table.

(b) Two billiard balls collide and move off in different directions.

(c) A small chicken crawls into a broken egg shell and the egg shells then
reassemble themselves to form an intact egg. <a-I4>

[D-2] Reversible and irreversible processes
Consider each of the processes described below.

(1) In each case, describe the process that would be observed in a backward-

running movie of this process.
(2) Is this a process which could be observed in actuality or which is very

unlikely to occur in actuality? Is the original process reversible or irreversible?
The following are the processes to be filmed.

(a) A pendulum, suspended from the ceiling, swings back and forth by
decreasing amounts until it finally comes to rest.

(b) A drop of ink, falling into a glass of water, spreads out so that all the ink
gradually becomes diffused throughout the water.

(c) A caris rolling up along a ramp with decreasing speed.

(d) A house collapses into a pile of debris when it is being demolished by an
explosion. <a-5>

E. Basic states and entropy

Importance of the number of basic states. As we have seen, the

probability that a macroscopic system is in a given situation- depends- on the
number of possible basic states in which the system can be (i.e., the number of
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basic states available to the system). A knowledge of the number  of basic
states available to a system is thus of central importance to all arguments about
macroscopic systems. In particular, it is useful to know how the number Q of
basic states depends on important macroscopic quantities that describe the
system (e.g., its volume V or total energy E).

Ideal gas. The following paragraphs examine this question in the case of
simple gases. Suppose that the number of molecules per unit volume in such a
gas is sufficiently small that these molecules are ordinarily far apart from each
other. The molecules then interact with each other to an almost negligible extent
as they move about, occasionally colliding with each other and with the walls of
the confining container. Such a simple gas is called an ideal gas.

Def: | Ideal gas: A gas whose molecules are sufficiently far apart
(E-1)

that they interact with each other to an almost negligible
extent.

The potential energy U of interaction of the molecules in such an ideal gas is,
therefore, negligible compared to the kinetic energy K associated with the
center-of-mass motion-of the molecules. If the molecules are monatomic (i.e., if
each molecule consists of a single atom), so that one can ignore the internal
energy of any molecule, the total energy E of the gas is then just equal to its total
kinetic energy K.

Dependence of Q on the volume of an ideal gas

Consider an ideal gas of N molecules in a container of volume V. Suppose
that the volume of this container were 2 times as large (while the energy of the
gas is the same). Then the number of possible positions available to each
molecules would also be 2 times as large. (See Fig. E-1.)

Hence the number of position states available to the first molecule would be
2 times as large. When this first molecule is in any of these positions, the
number of possible states available to the second molecule would also be 2 times
as large. Hence the number of position states available to both of these
molecules would be 2 x 2 = 22 as large. For each of these position states, the
number of position states for the third molecule would also be 2 times as large.
Hence the number of position states available to three molecules would be
22 x 2 =23 times as large. By continuing this argument, we see that the number
Q of positions states available to all N molecules would be multiplied by 2IV-

Similarly, if the volume V of the container were 3 times as large, the
number Q of position states would be multiplied by 3N. Hence we arrive at the
general conclusion that the number Q of position states available to the N
molecules is proportional to VN je.,

Qo VN (E-2)

for an ideal gas,

where the symbol o= means “is proportional to”.
Y. prop

19

For example, helium-and argon are such
monatomic gases' (consisting, respectively,
of He or A atoms).

( volume V )

@ f:

volume 2V

- J

Fig. E-1. (a) Points indicating the possible
positions of a single gas molecule in a
container of volume V. (Each point really
indicates a digitized position, i.e., a small
range of positions in a small cube
surrounding this point.)  (b) Possible
positions in a container of 2 times larger
volume.
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The number N of molecules in a real gas is, of course, enormously large
(e.g., typically there might be N = 1024 such molecules). The exponent of V in
(E-2) is thus enormously large. When the volume of the gas is increased, the
number of basic position states available to all the molecules in the gas increases
thus extremely rapidly.

Dependence of Q2 on the energy of an ideal gas

Consider now an ideal gas of N monatomic molecules when the gas has
some fixed volume and some known energy E (equal to its kinetic energy K).
What happens to the number of possible basic states available to the gas if its
kinetic energy is increased? Each of its molecules can then have a larger speeds
and hence also more possible values of its velocity. Thus the number of possible
values of the velocities of all the molecules in the gas is greatly increased.
Indeed, reasoning similar to that leading to (E-2) shows that the number Q of
these states of possible velocities depends on the kinetic energy K so that

for an ideal gas, Q oc K3N2, (E-3)

(The reasoning leading to this result is outlined below.)

Since the number N of molecules in a real gas is typically as large as 1024
the exponent of K in (E-3) is again enormously large. When the kinetic energy
of the gas is increased, the number of basic velocity states available to all the
molecules inthe gas increases.thus extremely rapidly.

Reasoning leading to the result (E-3)

Suppose thiat the kinetic energy of the gas were 2 times as large.
Then the kinetic energy of each: of its molecules would, on the average,
also be 2 times-as large. But this kinetic energy is equal to

1

om (V2 + vy2 +v;2) (E-4)
where m is the mass of the molecule and vy, Vy, vz are the three
components of its-velocity. The square of each of each of these
velocity components im (E-4) would then, on the average, also be
2 times as large. Hence the magnitude of each velocity component

(e.g., of vx) would Be larger by a factor of \E

As indicated in Fig. E-2, the number of possible values of vy,
having a magnitude less than this, would then also be V2 times as

large. For each of these values, there would similarly be ‘/?2- times as
many possible values of vy; and for each of these, there would similarly
be \/E times as many possible values of v, Thus the number of

possible values of velocity components for a single molecule would be
larger by a factor of

V2 x V2 x V2 = (V2) 322312,

For each of these values, a second molecule in the gas would also
have 23/2 a5 many possible values of its velocity components. For each
of these, a third molecules would also have-23/2 as many- possible

4 _ ) I
' values for energy < Ki
(a) —H+H+m-m+|-|4++m+u+m+o—
0 Vx
i values forenergy <2K |
E (‘f2-~times larger) ;
(D) —HH-HHHHHHHHHHHHHHHH—
0 Vx
_ y

Fig. E-2. Marks indicating the identifiable
digitized values of the velocity component
v of a single molecule. (a) Average range
of available values when the kinetic energy
of the gas is less than K. (b) Average range
of available values when this kinetic energy
is less than 2K.
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values of its velocity components. All the N molecules of the gas
would then have

2312, % 232, % 2302 x .. = (234N = 3N2

as many velocity components.

If the kinetic energy K of the gas were 3 times larger, the number
of possible values of velocity components of all molecules in the gas
would similarly be larger by 33N2 1 general, therefore, the number
of possible velocity states of the gas depends on its total kinetic energy
so that

Q o< K3N/2, (E-5)

Entropy

Dealing with unimaginably large numbers. The number N of atomic
particles in a macroscopic system is extremely large (e.g., as large as 10%4).
When one considers the number Q of basic states available to such a system, one
is then led to numbers which are even enormously larger. Indeed, as indicated
by results like (E-3) and (E-4), one may be forced to work with numbers as
unimaginably large_: as 210%,

One can avoid the difficulties of dealing with such gigantic numbers by
working with-their logarithms. For example, if Q =21024, In€2 (i.e., the natural

logarithm of Q) is 1024 x In2 = 0.69 x 1024, Although this may still be a large
number, it is at least a manageably large number!

Definition of entropy. Instead of working with the number Q of available

states, it is thus usually much more convenient to work with its logarithm. We
shall call InQ the basic entropy of a system in accordance with the following

definition:

Def: | Basic entropy: The basic entropy of a system is InQ (where Q

is the number of basic states available to the system). (E-6)

The quantity S, which is conventionally called the entropy of a system, differs
from this basic entropy only by a constant k.

S=kInQ

Entropy:

Def: (E-6)

This constant k, which is called “Boltzmann’s constant”, has no fundamental
theoretical significance, but is only introduced for the convenience of some
measurements. (Chapter 6 will discuss the particular international conventions
adopted to specify the numerical value of this constant.)

Entropy as a measure of randomness. The entropy provides a convenient
and precise way of specifying the degree of randomness of a system. Indeed, a
situation where a system can be in any one of a large number of possible basic
states is said to be more random than a situation where it can be in only a few
such states.

21

Strictly speaking, the preceding reasoning is
about the number @ of velocity states
corresponding to a kinetic energy /ess than
K and leads to the conclusion that @
K3N'2, The number Q of states in any small
range between K and K + dK is then equal
to (dd/dK) dK and is thus proportional to

K3N2-1_ Byt since N is as large as 1024,
1 is-utterly negligible compared to 3N/2,
Hence the result (E-5) is correct.

A review of logarithms can be found in
Appendix B. Wa shall work with the natural
logarithm (the logarithm to the base 6) since
it arises in many theoretical calculations.
However In x (the natural logarithm of-any
number x) is very-simply, related to log x (its
logarithm to base 10) so that
In x = 2.30 log x.

Ludwig Boltzmann (1844-1906) was an
Austrian physicist who first formulated a
statistical theory of gases-and thus laid the
foundation for an atomic theory of
macroscopic systems. The-atomic
specification of entropy, S = k InQ, was also
first introduced by him.
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For example, a situation where the molecules of a gas are equally
distributed in the two halves of a box corresponds to many more possible
positions of the molecules than a situation where all the molecules are in only
one half of the box. Thus one would say that the first situation is much more
random than the second. The entropy InQ is correspondingly larger is the first
situation than in the second and provides a quantitative measure of the degree of
randomness of the gas.

Problems

[E-1] Randomness in everyday life

The notion of randomness is also encountered in everyday life and there too
is related to the number of possible ways that a situation can be realized. The
following are some examples.

(@) In the game of bridge, each player is dealt a hand consisting of 13 cards.
Consider a situation A in which all the cards in such a hand are spades, and
another situation B where a hand contains some spades, some clubs, some
hearts, and some diamonds. (1) Which of these situations can be realized in
more possible ways? (2) Which of these situations is more random and
which is less random (i.e., more orderly)

(b) Compare the number. of ways. that. four letters can be used to form
meaningfil wotds and the namber of ways that four letters can be used to
form nonsense. words. (1) Which of these numbers is larger? (2) Does a
meaningful-word correspond to a more random or less random arrangement
of the letters? <a-9>

[E-2] Entropy.of very small systems

(a) Consider 4 very small system X which can only be in any one of 3 possible
basic states. What is.the basic entropy of this system?

(b) Consider another very small system Y which can only be in any one of
5 possible basic states. What.is the basic entropy of this system?

(¢) Consider the composite system consisting of both X and Y. In how, many
possible basic states can this. system be? What then is the corresponding
basic entropy of ‘this system? <k-1>

(d) How is the basic entropy of this composite system. related to the basic
entropies.of its constituent'systems X and Y? <g-18>

[E-3] Entropy due to molecular positions.in a gas

Suppose: that the position of every molecule in a gas is described with a
precision of 0.010 mm (or 1.0 x 105 m). The possible positions of each
molecule are then-indicated by the points in Fig. E-3 where each point is at the
center of a small cube: having a side of 0.010 mm.

(a) What is-the volume of each-such-small cube?

(b) Suppose that the box containing the gas-has a volume of 1.0 m3. In how
many pessible positiens-can a-single-molecule of the gas then be found?

(c) What then is the number of possible positions available to all the N
molecules of the gas?

(d) Suppose there are N = 1024 molecules in the gas. What then is the basic
entropy of the gas due to all the possible positions of its molecules? <a-3>

[E-4] Entropy of a gas

There are Qpos basic states available to an ideal gas because of all the
possible positions of its molecules. There are also Qye] basic states available to
this gas because of all the possible velocities of its molecules.
(@) What then is the fotal number  of possible states available to the gas (both

because of all the possible positions and also because of all the possible
velocities of its molecules)? <h-4>

Fig. E-3. Points indicating the possible
positions of a molecule in a gas.
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(b) How is the basic entropy InQ of the gas related to the basic entropy 1InQpos
and to the basic entropy InQyj due to velocities?
(c) For a ideal gas, the number Qpos of basic states due to possible positions

depends on the volume V of the gas in the manner specified by (E-3). If the
gas is monatomic, the number Qye] of basic states due to possible velocities
depends on the energy E = K of the gas in the manner specified by (E-5).

How then does the basic entropy InQ of the gas depend on its volume V and
its energy E? <a-16>

[E-5] Typical magnitudes
A consideration of macroscopic systems leads one to deal with numbers of

very different sizes. Thus it is useful to distinguish the following kinds of
numbers:

(1) Ordinary numbers (like 5 or 100).

(2) Huge.numbers (like 1023).

(3) Gigantic numbers (like 10107,
State whether the typical magnitudes of the following quantities are ordinary,
huge, or gigantic.

025

(a) The number of atoms in a macroscopic system (like a person or the air in a
room).
(b) The basic entropy InQ of such a macroscopic system. <h-10>

(¢) The number Q of pessible-basic states-in-which.such a system can be?
(d) Suppose that the basic entropy of such a macroscopic system is increased by
0.1%. If its original entropy is In€}, its new entropy InQ' is then such that

InQ' — In€2 = 0.001 InQ2.

The new number Q' of basic states available to the system is then
correspondingly larger than the original number Q of basic states available
to the system. To assess how much larger it is, determine whether the ratio
Q'/Q is an ordinary number, a huge number, or a gigantic number. <a-25>

F. Properties of the entropy

Dependence of entropy on energy

Entropy of a monatomic ideal gas. If the volume of a macroscopic system
remains unchanged, its entropy depends on the internal energy E of the system.
For example, consider the simple case of a monatomic ideal gas where the
internal energy E is just equal to the total kinetic energy K of the molecules.
According to (E-§), the number of basic states available to the gas, because of
the different possible velocities of its molecules, is then proportional to E3N/2,
ie.,

Q = c E3N2

where c is some constant. Hence the basic entropy of this gas depends on its
internal energy E so that

for ideal monatomic gas, InQ=Inc+ %\i InE. F-1)
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24 4. General properties of macroscopic systems

The basic entropy of such a gas thus increases with its energy E in the manner
illustrated in Fig. F-1.

Entropy of any system. Most macroscopic systems are, of course, more
complex than ideal gases because their atoms or molecules interact appreciably
with each other. Thus their internal energy E = K + U includes also appreciable
potential energy U of interactions among atomic particles. But all these systems
contain many moving atomic particles. If the internal energy E of such a
system is increased, the kinetic energy of these moving particles is also
increased. As in the case of the ideal gas, the number of possible velocities of
these particles is then correspondingly also greatly increased.

The number Q of basic states available to any macroscopic system is thus
greatly increased if its internal energy E is increased. The basic entropy InQ of
any macroscopic system then increases with its energy E again roughly in the
fashion indicated in Fig. F-1 (although the exact dependence on the energy will
be more complex than in the case of an ideal gas).

Entropy change and absolute temperature
Small entropy change and basic temperature. Suppose that the volume
of a macroscopic system is kept fixed, but its internal energy E is changed by a

small amount dE. The basic entropy InQ of the system is then correspondingly
changed by the small amount

dinQ .
dInQ==,7=dE = dE.

(F-2)
Here we have used B (the Greek letter beta) to denote the quantity d InQ/dE

which is the rate of change of the basic entropy with energy. (This quantity
indicates the slope of the graph in Fig. F-1.) We can call this quantity the basic
temperature of the system.

Def: | Basic temperature : B= iE (F-3)

By virtue of (E-§), this definition can also be expressed in terms of the
conventional entropy S = k.InQ. Thus

1dS

=Y dE’ (F-4)

According to the definition (F-3), the basic temperature B specifies how
rapidly a system’s entropy (or randomness) changes with increasing energy.

Absolute temperature. Since InQ is just a number, the basic temperature 3

has units involving an energy. More specifically, 1/B has the units of an energy
(e.g., joule). Hence it is convenient to introduce another quantity T, called the
absolute temperature, related to the basic temperature B according to the

following definition:

- ~
s
Q==
1=
1
1 =p=—
slope o
E
N Y,

Fig. F-1. Qualitative graph showing how
the basic entropy InQ of a system depends
on its internal energy E.

This conclusion is not true if one ignores the
velocities of the particles in a system. (This
may occasionally be done in special cases
where one considers only the “spins” of
atomic particles.)
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Def: | Absolute temperature T: kT = (F-5)

==

Note that the quantity kT has thus simply the units of an energy.

Equivalently, (F-3) allows one to express the basic temperature § in terms
of the absolute temperature T. Thus

1
=¥T (F-6)

Small entropy change and absolute temperature. The relation (F-2)
specifies how much the entropy S of a system changes if its energy E is changed
by a small amount (while its volume remains constant).. Thus it implies that

S _ 1
for constant volume, K = kT dE
or dS = d?E' . F-7D

If the system’s volume remains fixed so that no work is done on the system,.

the small energy change dE can only be due to a small amount of heat d'Q
absorbed by the system. Equivalently, (F--7) can thus be written in the form

_d4Q
ds = T I (F-8)

Internal energy and absolute temperature. The qualitative graph in
Fig. F-1 indicates how the basic entropy of a system changes with its internal
energy E.. As the energy E increases, the graph becomes less steep, i.e., its
slope B decreases. The basic temperature B of a system thus decreases when its
internal energy-increases. Since kT = 1/f; this implies correspondingly that the
absolute temperature T of a system increases when its.internal energy. increases.

Significance of the absolute temperature. According to (F-7), the
absolute temperature T (or more precisely its reciprocal 1/T) indicates how
rapidly the entropy of a system increases with increasing energy. For example,
when the internal energy E of a system is small (and its absolute temperature T
correspondingly also small), a small increase dE of its energy leads to a large
increase dS of its entropy. But when the internal energy E of ‘a system is large
(and its absolute temperature T correspondingly also large), the same small
increase dE of its energy leads to a smaller increase dS of its entropy.

Since B-or T depend on the internal energy of a system, they can be used as
indicators of this internal energy. According to the comments made in
Chapter 2, one is thus well-justified in calling these quantities “temperatures”.
On the other hand, these quantities are not just related to the length of the
column of liquid of some arbitrary thermometer. They have a more fundamental
significance since they are directly related to the number of basic states available
to a system. Indeed, the fundamental significance of the basic temperature (or
absolute temperature) will become fully apparent in the next few chapters.
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26 4. General properties of macroscopic systems

Entropy of a composite system

Consider a macroscopic system X which consists of two parts X; and X, as
schematically indicated in Fig. F-2. Suppose that the part X; of this system can
be in any one of Q, possible basic states and that the other part X, of this system
can be in any one of Q, basic states. In how many basic states can the combined
system X then be?

If X, is in any one of its basic states, X, can be in any one of its Q, states.

But X can be in each of its Q; states. Hence the number Q of states available to
the total system is

Q=§22 XQZXQZX...X.QZ

-

e

Q, factors
or Q=Q Q,. (F-9)
The basic entropy of the total system is thus
In© =InQ; +1nQ; . (F-10)

If both sides of this relation are multiplied by k, one then obtains the result

n

In other words, the entropy of a-system is the sum of the entropies of its parts.

The preceding  conclusion is equally true for a system consisting of any
number of parts. Accordingly, it also implies that a system which consists of n
identical parts. has.an entropy'n times as. large as that of one of its parts. The

entropy of such a system (like the mass of the system) is thus proportional to the
number of particles in.the system. (For example, a copper block having a mass
of 3 kg has an.entropy 3:times larger. than a copper block having a mass of 1 kg.)

Eniropy and precision of description

To identify discrete basic states,.we grouped neighboring values of
positions or velocities into small ranges which could then be counted.
As discussed.in Section B.of Chapter 3, each basic state corresponds
thus-to some smaH range of: pesitions and-velocities.

For example, one might speeify each particle’s position ceordinate
x within a range of 10-5 meter. However, if one is interested in greater
precision, one could specify it within a range of 10-6 meter — and
would tHereby identify 10 times as many distinguishable values of x. If
one .increase the precision. of description of all the positions or
velocities, one thus multiplies-the number € of identified basic states
by some large factor.

However, the number Q, and Qg of basic states in any two
macrostates A and B would be multiplied by the same factor. Hence the
ratio
g—: is independent of precision.

The corresponding logarithm is thus also independent of precision, i.e.,

System X

Xy

X5

-

/

Fig. F-2. A system consisting of two parts.
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InQ, — InQp is independent of precision

so that
S4 —Sp is independent of precision.

Thus one arrives at the following conclusion: Although the entropy
itself depends on the chosen precision of description of the basic states,
the difference between any two entropies has a physical significance
independent of the chosen precision.

Problems

[F-1] Absolute temperature and energy of a- monatomic ideal gas

The relation (F-1) specifies how the basic entropy InQ of a monatomic ideal

gas depends on its internal energy E = K.

(a) Use the definition (F-3) of basic temperature to find how the basic
temperature f of this gas depends on its energy E. <h-8>

(b) How then is the average, energy E/N of a single molecules of this gas related
to the absolute temperature T of the gas?

(c) If the-absolute temperature of the gas is 3 times larger, how much larger is
the average kinetic energy-of one of its molecules? <a-13>

. [F-2]. Energy and.éntropy. changes.in thermal.interaction

A system X is placed into contact with a system Y so that heat can be
transferred from one to the other. (For example, X might be a spoon and Y a
cup of tea.) Therentire system, consisting of X and Y, is thermally insulated
from its surroundings. The system X, which has-initially a lower absolute
temperature thamthe system Y, is then. observed to. absorb some pesitive amount
of heat.

(a) Is the heat absorbed. by the system Y positive, negative, or-zero?

(b) Does the internal energy of X increase, decrease, or remain the same?

(c) Does the internal energy of Y increase, decrease or.remain the same?

(d) Does the internal energy of the entire system increase, decrease, or remain
the same?

(e) Does the entropy of X increase, decease, or remain the same?

(f) Doesthe entropy-of Y increase; decrease, or remain the same?

(g) Does thie entropy of the entire: system increase, decrease, or remain the
same? <h-7> <a-15>

G.. Summary

Definitions.

Reversibility: A process is reversible if a backward-running movie of it shows a
situation that could readily be observed in actuality. It is irreversible if such
a movie shows a situation that would be exceedingly unlikely to occur in
actuality.

Ideal gas: A gas whose molecules are sufficiently far apart that they interact

with each other to an almost negligible extent,
Basic entropy: The basic entropy of a system is InQ (where Q is the number of

basic states available to the system).
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In a more accurate quantum-mechanical
discussion of atomic particles, the basic
states are unambiguously defined as
quantum states. No precision needs then to
be specified, i.e., the precision is ultimately
specified-by.a constant of nature (Planck’s
constant). The more accurate quantum-
maechanical description of atomic particles
leads, therefore, to a uniquely defined value
of the entropy.
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Entropy: S=kInQ {k = Boltzmann’s constant)
{The entropy provides a convenient measure of the degree of randomness of
a system.}

Basic temperature: B= d—;%-g.

{The basic temperature thus specifies how rapidly a systems’ entropy
changes with increasing energy.}

Absolute temperature T: kT=

|-

Important knowledge

Probability of a macrostate: Pp < Q,

{The probability that a macroscopic system in a particular macrostate is
proportional to the number of basic states available to the system in this
macrostate}.

Equilibrium values: Macroscopic quantities describing a macroscopic system
in equilibrium have values very close to their most probable values, but
exhibit small fluctuations around-these.

Irreversibiliij; of m;cr‘-;:s:zi)p?c pro;;;;ses: Processes involving macroscopic
systems are predominantly irreversible (since they involve motions of many
independently moving atomic particles).

Approach to equilibrium. If a macroscopic system is in a situation where it is
not with equal-probability in:each.of its available basic states, it will change
until it reaches the equilibriumrsituation where these probabilities are equal.

Dependence of entropy on-energy: The entropy of a macroscopic system

increases with its internal energy.
Small entropy-change (for fixed volume):

dQ=BdE o ds=T=92.

Additivity of entropy: The entropy of a macroscopic system is the sum of the
entropies of its.parts.

New abilities
You should now be able to do the following:

(1) Calculate the probabilities of various spatial distributions of molecules in a
gas if it consists of only very few molecules in equilibrium.

(2) Describe qualitatively equilibrium and non-equilibrium situations.

(3) Decide whether a-process is reversible or irreversible.

(4) Find the absolute temperature of a system if youw know how its entropy
depends on its internal energy.
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Problems

[G-1] Spatial distribution of 3 gas molecules

Fig. G-1 illustrates a very simple gas consisting of only three molecules
inside a box. In equilibrium each of these molecules is then equally likely to be
located in each third of the box.

(a) What is the probability Py that no molecule is located in the left third of the
box?

(b) What is the probability P; that one molecule is located in the left third of the
box?

(c) What is the probability P, that two molecules are located in the left third of
the box?

(d) What is the probability P; that all three molecules are located in the left
third of the box? <h-6> <a-17>

[G-2] Spatial distribution of 5 gas molecules

Fig. G-2 illustrates a very simple gas consisting of five molecules inside a
box. In equilibrium each of these molecules is then equally likely to be located
in each third of the box.

(a) What is the probability that all the molecules are located in the left third of

the box? .

(b) What is the probability that no molecules is located in the left third of the
box?

(c) What is the probability that two molecules are located in the left third of the
box? <a-11>

[G-317 Probability that any number of gas molecules are in one half of a box

A gas of N molecules is in equilibrium inside a box so-that every molecules
is equally likely to-be in:the left half or the right half of the box.

(a) What is the total number of possible ways that the N molecules can be
distributed over the two halves of the box?

(b) If there is one molecule in the left half, this molecule can be any one of the
N molecules. Ifthere is also a second molecules in the lefthalf, this can be
any of the remaining (N 1) molecules, In how many ways can one select
theses two molecules so that they are at two distinct places in the left half of
the box? In how many ways can one select them irrespective of where they
are in the:left half of the box?

(c) If there is also a third molecule in the left half, this can be any of the
remaining (N — 2) molecules. If there is also a fourth molecule in the left
half, this.can be any of the remaining (N — 3) molecules. And so forth. If
there are n molecules in the left half, in how many ways can one select these
so thatthey are at n distinct places in the left half of the box?

(d) The actual places where these molecules are in the left half is irrelevant. In
how many ways could the-molecules.be rearranged among the preceding
places (and yet leave exactly the same molecules in the left half of the box)?
<h-2>

(¢) What then is the probability that n of the N molecules are found anywhere
in the left half of the Box?

(f) The preceding’general result was used to calculate the probabilities listed in
Fig. B-2 about a gas of 20 molecules. To check the general result, apply it
to a gas of 6 molecules and find the probability that 3 of these molecules are

in the left half of the box. Does your result agree with that which you found
in Problem A-1? <a-20>
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Fig. G-1. A gas of three molecules in a box.

Fig. G-2. A gas of five molecules in a box.
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[G-4] Alternative listing of the positions of 4 molecules

Fig. A-2 listed the possible ways in which 4 molecules can be located either e
in the left half or the right half of a box. This listing was done by focusing
attention on either half of the box and listing which of the four molecules could n 1 1 2 3 4
be in this half. Alternatively, one could focus on each of the four molecules and L L L R
list whether each of these is in the left half (L) or right half (R) of the box. (For 3 1
example, the particular entry in the table of Fig. G-3 indicates that molecules 1,
2, and 3 are in the left half of the box and molecule 4 is in the right half of the
box.)

Proceed in this manner to list in the table all the 16 possible ways in which
the molecules can be distributed over the two halves of the box. <g-4> Y J

molecule #

[G-5] Time-averaged-value Fig. G-3. A table with an entry specifying
A macroscopic system can be observed in the course of time, e.g., by taking one particular arrangement of 4 molecules in

amovie of it. Some quantity n (like the number of gas molecules in one half of  two halves of a box.

a box) can then be measured at several successive times. For example, if one

looks at f successive frames.of the movie, one might observe that n has the value

n; in the first of these movie frames, the value n; in the second of these frames,

the value nj in the third of these frames, and so forth. The time-average value

<n>¢ of n, over these f successive frames, is then defined so that

n1+n2+n3+...+nf
£ .

(2) The number n of molecules in one half of the box does not always have the
same value, but fluctuates in the course of time. Does the time-averaged
value of thismumber fluctuate more or less than n itself?

(b) If one averages of more frames (i.e., over a longer time), do the fluetuations
in the time-averaged value become larger or smaller?

(c) Does this time averaged value of n change appreciably in the course of time
if the gas is.not in equilibrium? Does it change appreciably if the gas is in
equilibrium? <a-19>

<>t =

[G-61t Increase of number of gas states with energy

The basic entropy of a monatomic ideal gas depends on its energy E in the

manner specified by (F-1).

(a) Consider such a‘gas consisting of N molecules. What then is the change d
(InQ2) of the basic entropy of this gas when its internal energy is increased
by 0.1% ?

(b) What is this change if N = 1024 molecules?

(c) Suppose that the gas can be in any of €2 possible states when its energy is E
and that it can be in any of Q' possible states when its energy is 0.1 larger.
What then is In (Q'/Q)?

(d) Correspondingly, what is the ratio Q/Q? Does a small increase in the

energy of the gas then produce a moderate increase in the number of
possible states of this gas, a huge increase, or a gigantic increase? <g-22>



